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Abstract

Euclidean embeddings are ubiquitous in machine learning ap-
plications in classificaiton settings. However, typical testing
schemes (such as in face recognition) utilize the cosine similar-
ity for feature matching, which creates a disconnect between
training and testing scenarios. In this paper, we present Coper-
nican loss, which learns a discriminative cosine embedding
that addresses this gap. Copernican loss discriminates between
all samples from different classes within a batch of size m
with just m gradient computations (as opposed to m2 −m in
previous work). We demonstrate the efficacy of the proposed
approach with extensive experiments on CIFAR 10 and 100.
Further, while keeping away from performance boosting pre-
processing steps such as face alignment in training and testing,
we match high performance on large scale face recognition
datasets namely LFW and IJB-A Janus.

Introduction
Recent developments in deep neural networks have ad-
dressed a wide array of components. There has been con-
siderable effort in developing deeper structures (Simonyan
and Zisserman 2014; Szegedy et al. 2015; He et al. 2016)
and more effective non-linearities (Goodfellow et al. 2013;
Nair and Hinton 2010; He et al. 2015). Apart from struc-
tural developments, there have been many efforts in com-
bating over-fitting and obtaining better gradients (Ioffe
and Szegedy 2015; Srivastava et al. 2014; Salimans and
Kingma 2016). Although fewer in number, there have also
been recent studies recognizing the importance of stronger
loss functions such as (Hadsell, Chopra, and LeCun 2006;
Schroff, Kalenichenko, and Philbin 2015; Wen et al. 2016;
Tadmor et al. 2016). Indeed, a robust loss function which en-
courages highly discriminate feature learning is a direct way
to provide the network with more informed gradients towards
the ultimate supervised task. A fully connected layer coupled
with the cross-entropy loss and the softmax layer, together
which we call the Softmax loss in this paper, is arguably the
most prevalent loss function in practice. The Softmax loss
has proved to be very versatile in use, and is able to provide
reasonably good gradients owing to the well-behaved cross-
entropy loss. A few recent studies have attempted to modify
the Softmax loss in order to increase discrimination in terms
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of larger angular margin (Liu et al. 2016), or normalize the
features going into Softmax thereby solving a non-convex
problem (Ranjan, Castillo, and Chellappa 2017).

A different thrust towards obtaining highly discriminative
features involves minimizing alternate loss functions or aug-
menting the Softmax with supplementary losses. Constrastive
loss (Hadsell, Chopra, and LeCun 2006) and the Triplet loss
(Schroff, Kalenichenko, and Philbin 2015) replace the Soft-
max loss with losses which focus on learning a discriminative
embedding while trying to minimize intra-class variation in
the learnt features. This is done by carefully sampling training
pairs or triplet sets which leads to expensive hard-sample min-
ing in large-scale applications. Center loss (Wen et al. 2016)
on the other hand, is an approach which ignores hard-sample
mining while only trying to minimize intra-class variation
along with the Softmax loss. Another approach which was
proposed to work on random batches is the Multi-batch es-
timator (Tadmor et al. 2016). Multi-batch is an example of
the metric learning approach which for a batch size of m,
utilizes all m2 −m pairs for a better estimate of the gradient.
All these works mentioned operate in the l2 or Euclidean
space. As we explain in a later section and demonstrate in
our experiments, although l2 embeddings perform well in
many applications, the performance gain they provide is lim-
ited in situations when the number of samples per class is
high. In such situations, forcing all samples from a class to
be converge towards each other in the l2 sense is too difficult
a task since it requires the network having to converge not
only in angle but also the norm of the features. Further, dur-
ing testing in typical supervised classification such as face
recognition, the most common metric is the cosine distance
which ignores the norm. This creates a disconnect between
training and testing since the network learns a behavior (to
constrain the norm as well) that is ignored during test. Such
a framework is inefficient. Recently1, COCO (Liu, Li, and
Wang 2017), a form of cosine loss was proposed for person
recognition. COCO minimizes intra-class variation towards
a class center and maximizes inter-class variation of samples
with the centers of other classes as opposed to the global
batch center which significantly raises computational com-
plexity. The approach uses hard normalization and is similar

1(Liu, Li, and Wang 2017) was published at the time of writing
this manuscript.



to recent other studies (Ranjan, Castillo, and Chellappa 2017;
Wang et al. 2017), all of which formulate a non-convex con-
straint.

Contributions. Our proposed Copernican loss has two im-
portant properties. 1) It is designed to augment the standard
Softmax loss while explicitly minimizing intra-class variation
and simultaneously maximizing inter-class variation. 2) It
operates using the cosine distance and thereby directly af-
fects angles leading to a cosine embedding which removes
the disconnect between training and testing. This improves
efficiency since more of the model complexity is utilized to
learn a more discriminative embedding rather than learning
to constrain the norm. Copernican loss does not require hard
sample mining or data augmentation of any kind, and can be
effectively minimized using SGD on random mini-batches.
It only needs to maintain a center for each class called the
Planet center and computes the mean of the mini-batch called
the Sun center (humoring the Copernican analogy of the
solar system). In order to minimize intra-class variation, it
minimizes the cosine distance of the samples to their corre-
sponding Planet centers. In order to discriminate between the
samples within a mini-batch, Copernican loss maximizes the
cosine distance of the samples away from the mean of the
mini-batch called (Sun center). This eliminates the need to
compute a pair-wise gradients such as the Multi-batch (Tad-
mor et al. 2016) while providing the similarly discriminative
gradients in a more efficient manner.

Copernican loss: Learning a Discriminative
Cosine Embedding

Motivation and Intuition
The Need for Simultaneous Discrimination and Invari-
ance. Learning robust features is a key problem in su-
pervised learning. Robustness here refers to two specific
properties of a useful feature. 1) Invariance to intra-class
nuisance transformations while being 2) discriminative to
inter-class transformations. Although there exist loss func-
tions prevalent in practice implicitly optimize for this cri-
teria, such as the Softmax loss 2 and negative log likeli-
hood, the features learnt using pure forms of the loss func-
tions are not robust enough for harder classification tasks.
Thereby, explicit simultaneous maximization of intra-class
similarity and inter-class discrimination is critical. In con-
trast to some loss functions in literature (Liu et al. 2016;
Wen et al. 2016), Copernican loss explicitly optimizes for
both objectives (invariance and discrimination) between all
samples in a mini-batch. Although, constrastive embedding
(Hadsell, Chopra, and LeCun 2006) and Triplet loss (Szegedy
et al. 2015) both advocate simultaneous optimization of dis-
crimination and invariance, they search for useful gradients
through clever and expensive sample mining. One way to
mitigate the need for mining is to discriminate all samples
belonging to different classes away from each other. Coper-
nican loss does this by moving the samples away from the

2In this paper, we jointly refer to the last fully connected layer
of a deep network, along with the cross-entropy loss followed by a
softmax layer as the Softmax loss.

global batch mean, which efficiently provides discriminative
gradients without sample mining.

The Need for a Cosine Embedding. Classification in
machine learning, at its fundamental level, is typically con-
ducted using the inner-product. The inner-product between
the weight vector w and the sample x is a product of their
norms and the cosine of the angle between the two vectors.
The ideal classification vector w would provide a high inner-
product with a sample from the correct class and be low for
ones from impostor classes. Thus we would want wTxcor >
wTximp ⇒ ||xcor||2 cos(θcor) > ||ximp||2 cos(θimp). The
classification decision therefore, ultimately rests on the norm
of the sample x and the cosine angle between the weight
vector. In this light, there are two ways of increasing dis-
crimination. 1) Increase the norm of the correct class, and 2)
decrease the cosine angle between the weight vector and the
sample. For binary class problems, increasing the norm of one
class over another might be feasible, however for multi-class
problems this approach would not be effective. Maximizing
the norm of samples from one particular class over all others,
would hinder correct classification of other classes. Thereby,
one approach to increase discrimination that can be applied
to multi-class problems is to maximize the angle (or equiva-
lently the cosine distance) between classes. This reasoning
also applies to the Softmax loss function which is perhaps
the most commonly used loss in supervised deep learning
and is also the baseline in our study. Indeed, minimizing the
intra-class cosine distance while simultaneously maximiz-
ing the inter-class cosine distance seems to be a reasonable
goal. This is also exactly for our proposed Copernican loss
optimizes for.

Limitations on an l2 embedding. There have been mul-
tiple loss functions proposed that learn an l2 embedding
such as the Center loss (Wen et al. 2016), Triplet loss
(Schroff, Kalenichenko, and Philbin 2015) and Multi-batch
(Tadmor et al. 2016). All of these losses explicitly minimize
the l2 distance between samples from the same class. Con-
cretely, for sample features x1 and x2 from the same class,
||x1−x2||22 = ||x1||22+||x2||22−2||x1||2||x2||2 cos(θ), where
θ is the angle between the two samples. Minimizing this quan-
tity requires 1) minimizing the difference between norm of
the features x1 and x2 and 2) minimizing the cosine distance
between the two. There are two cons of this approach.

1. During testing and extraction of a similarity score (e.g. for
open set face or object feature extraction), only the cosine
distance is taken into account. This implies that explicitly
constraining the norm is inefficient for the loss function
layer from the perspective of matching since the model
needs to learn sub-tasks (i.e. constraining the norm) that
it does not require during testing. Successful approaches
such as batch normalization (Ioffe and Szegedy 2015) on
the other hand do not require the model or the weights
themselves to perform normalization, they perform it ex-
plicitly through the normalization operation. This allows
the model complexity to be used to focus on the angles
between the samples instead.

2. More importantly, for tasks with a large number of sam-
ples per class (such as typical object recognition), trying to
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Figure 1: The figures illustrate a sample mini-batch. Red, blue and green denote different classes. Humoring our Copernican analogy, solid
colored dots depict the class centers (‘planets’), the hollow colored dots represent samples (‘moons’) and the black dot denotes the global
mini-batch center (‘sun’). Copernican loss minimizes the sum of planet loss and sun loss. Planet loss minimizes intra-class variation and
pushes the samples (hollow colored dots) towards the class centers (solid colored dots) under the angular or cosine metric. Sun loss maximizes
inter-class variation by moving all samples away from the global batch center (solid black dot). Dotted black lines denote the gradient direction
for the sun loss and colored solid thin lines denote the gradient directions from planet loss. (a) ‘Top’ view of the mini-batch where no origin is
observed. The dotted circles are not the unit norm hypersphere and are shown to simply motivate the Copernican analogy. (b) An example
ambiguous configuration as presented in (Tadmor et al. 2016). Copernican loss can provide useful gradients without needing 1) hard sample
mining as in (Schroff, Kalenichenko, and Philbin 2015) and using only 2) m gradient computations compared to m2 −m for (Tadmor et al.
2016).

have the large set of samples per class all converge to the
same point in the euclidean sense proves to be a difficult
challenge for a deep network. As we find in our experi-
ments with Center loss (Wen et al. 2016)3, it is much easier
to simply have the angle of the sample features converge
as opposed to convergence in the l2 sense. With this ap-
proach, the network does not need to constrain norms, and
model complexity is better utilized in creating a larger
angular margin resulting in better performance during
testing. Perhaps this is the reason that none of the pre-
vious works on learning l2 embeddings (Wen et al. 2016;
Schroff, Kalenichenko, and Philbin 2015; Tadmor et al.
2016; Hadsell, Chopra, and LeCun 2006) report results on
object recognition datasets with a large number of samples
per class. Examples include datasets such as CIFAR10 and
CIFAR100 which have fewer classes (10 and 100 respec-
tively) but many more samples per class (6000 and 600
images per class respectively). The focus of those stud-
ies is mainly face recognition which is characterized by
a large number of classes (e.g. above 10,000 for CASIA-
WebFace) with relatively few samples per class (average
of about 50 samples per class for CASIA-WebFace).

3In our experiments with Center loss, which was shown to per-
form well in face recognition tasks (Wen et al. 2016), we found
that it consistently performs worse than Copernican loss (and for
λ = 0.1 worse than vanilla Softmax loss) on both CIFAR10 and
CIFAR100 a fact which supports our hypothesis.

Copernican loss
For a batch of size m, Copernican loss, denoted by LC , is
defined as the sum of three loses as follows.

LC = LSoft + λ

 1

m

m∑
i

(1− cos(xi, pyi))︸ ︷︷ ︸
LP

 (1)

+

 1

m

m∑
i

max(0, cos(xi, s)− β)︸ ︷︷ ︸
LS

 (2)

Here, LP is the Planet loss minimizing intra-class cosine vari-
ation and LS is the Sun loss, maximizing inter-class cosine
variation and LSoft is the Softmax loss. β is the margin for
Sun loss, s is the global center for the particular batch (or the
‘sun’) and p’s are the class centers (or the ‘planets’) 4. In the
ideal case, s and p’s would represent the class centers and the
global center of the entire dataset. However, computing these
quantities over the entire dataset would be very expensive,
especially for large-scale applications. To get around this
problem, in the case of the global center (sun s) of the entire
dataset , we approximate it with the global center of each

4To humor our Copernican analogy, the samples themselves
could be considered to be the ‘moons’ of their corresponding planets
(or class centers).



mini-batch. Therefore for every batch, s = 1
m

∑m
i xi. Com-

putation of the class centers (planets p) also face a similar
issue due to scale. However, class centers cannot be effec-
tively estimated using a single batch due to high variance,
especially in the early stages of training. One way to obtain
a better estimate is to maintain a class center and update it
with every batch in the following sense,

pj+1
yi = pjyi + α

1

n
xi

Here, we assume there are n instances of class i in the mini-
batch. α is the update weight factor and is usually set to a
small value (say 0.05). Compared to direct computation of
class centers over the mini-batch set, this update provides
more robustness to sample perturbation while simultaneously
addressing the problem of scalability in estimating the centers.
Copernican loss is simple to implement and unlike Triplet
loss (Schroff, Kalenichenko, and Philbin 2015), it does not
require hard sampling mining which would’ve increased the
computation complexity of the overall loss. Further, compu-
tation of discriminative gradients only requries m gradient
computations compared to m(m− 1) for Multi-batch (Tad-
mor et al. 2016).

Resolving an ambiguous configuration. We discuss the
ambiguous configuration presented in (Tadmor et al. 2016)
in Fig. 1(b). Here, four samples are mapped into the feature
space during early training when classes are mixed. The al-
gorithm needs to pick pairs of samples from different classes
to take a gradient step towards better discrimination. Picking
Alice-Carol pair would not help the configuration as they have
sufficient separation (> 1) and neither will Bob-Alice pairs.
As (Tadmor et al. 2016) points out, only Carol-Bob pairs
will provide useful updates by moving Bob away. Center loss
(Wen et al. 2016) would worsen things since it will push the
two Alice’s closer to Bob. Triplet loss (Schroff, Kalenichenko,
and Philbin 2015) would need to sample Carol-Bob which
is expensive to determine hard-sample mining and unlikely
if no sample mining is performed. Multi-batch (Tadmor et
al. 2016) solves this problem by considering all pairs in the
mini-batch. Our proposed Copernican loss is guaranteed to
provide discriminative gradients for all samples without the
need for 1) sample mining nor 2) m(m− 2) gradient compu-
tations (we need only m), since it moves samples away from
the Sun center (black dot in Fig. 1(b)). To bring Alice pair
closer, Planet loss provides a gradient which will be effective
since Bob has moved out of the way due to the Sun loss.

Optimization
The gradients of Copernican loss are straight forward. Since
the sun center and planet centers are updated during forward
pass, only gradients with respect to the input xi is required
to be derived which are are follows.

∂LP
∂xi

= − 1

m

m∑
i

1

||xi||2

(
pyi
||pyi ||2

− cos(xi, pyi)
xi
||xi||2

)
(3)

∂LS
∂xi

=

{
1
m

∑m
i

1
||xi||2

(
s
||s||2 − cos(xi, s)

xi

||xi||2

)
0

(4)
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Figure 2: The norm of the difference vector between the Cosine
distance gradient and the MSE distance gradient and the angle
between them (in radians) remains fairly constant as dimensionality
increases. Experiment was performed on random vectors for features
and targets (planets).

where ∂LS

∂xi
becomes 0 only if cos(xi, s) ≤ β. It is interest-

ing to note that the gradient direction of the cosine similarity
is different from the MSE gradient by a scaled version of
the sample feature. This scaling factor is the cosine angle be-
tween the sample feature and the target vector. Fig. 2 shows
the norm of the difference between the MSE gradient and
the cosine similarity gradient as dimensionality increases
along with the angle between the two 5. For all dimensions
above 10, the angle between the cosine similarity gradient
and MSE gradient is about 20◦. It is interesting to note that a
gradient direction differing by 20◦ can result in significantly
improved performance as we find in our experiments. As the
sample features converged to the planets or class centers, the
MSE gradient direction converges to the cosine similarity
gradient direction, since cos(xi, pyi)→ 1. This fact coupled
with superior performance of the cosine similarity leads us
to hypothesize that during the initial stages of training, when
the features are not informative of the class structure, MSE or
l2 embedding gradients are more noisy. Cosine embeddings
are able to obtain better gradients by ignoring this noise since
it only looks at angular margins which is not affected by the
norm of the vectors. We observe this in our experiments.

Experimental Validation
We present results on general object recognition benchmarks
of CIFAR10 and CIFAR100 primarily to study and compare
the behavior of the Copernican loss with vanilla Softmax
and Center loss (Wen et al. 2016). We also showcase the
efficacy of our method on large scale face recognition tasks
with no alignment for a harder challenge. We implemented
Copernican loss and Center loss following (Wen et al. 2016)
in Torch. The class center update learning rate α was set to
0.05 for all experiments.

General model and implementation details. Our bench-
marking model for all experiments for consistency is a Resnet
following (He et al. 2016) based off the Torch implementa-

5 Two random normalized vectors were used for the gradient
computations. For each dimensionality, 1000 such random pairs
were averaged over.



tion6. During development of our method, similar perfor-
mance trends were observed for other architectures as well.
For CIFAR experiments, the models followed the correspond-
ing CIFAR architecture from ResNet Torch codebase.

For our face recognition experiments our network had
4 stages with 2 blocks each, with number of filters as
{64, 128, 256, 512}. The network ended with a global pool-
ing stage (8 by 8 for CIFAR and 7 by 7 for face recognition)
followed by a fully connected layer. The feature dimension
(input to fully connected layer) for CIFAR was 1024 and
for face recognition was 512. The bottleneck layer type is
a pure Resnet connection. The CIFAR models were trained
on a single GPU whereas the face recognition models were
trained on 2 GPUs, all with a mini-batch size of 128, a weight
decay of 0.0005 and momentum of 0.9. Learning rate was set
to 0.1 and reduced by a factor of 10 at the 50 % and at the 75
% mark.

Experiments with CIFAR 10 and CIFAR 100
Our experiments with CIFAR10 and 100 focus on exploring
the effect of β and λ on performance. We also focus on
comparisons with the baselines Softmax and Center loss. A
comparison with a version of Copernican loss learning an
l2 embedding (instead of cosine) is also made. We train on
default 50K training set and test on the 10K test set. The only
data augmentation used was zero-padding the original image
32× 32 image to 40× 40 followed by a random crop of size
32 × 32 and flipping with a probability of 0.5. Fig. 3 and
Table 1 present the results of these experiments. The final
error rate reported is the average of the last 50 epochs (with
very small variance).

Limitations of an l2 embedding. To highlight the signif-
icance of a cosine embedding, we also benchmark against
the l2 version of Copernican loss (denoted as l2 Copernican
(Ours) in Table 1). The l2 version minimizes the MSE in-
stead of the cosine distance between the sample features xi
and the planet centers pyi and maximizes the same between
the features xi and the sun center s. From Table 1, we find
that both Center loss and l2 Copernican loss perform worse
than the cosine embedding. Interestingly, Table 1 shows that
Center loss performs worse than vanilla Softmax for λ = 0.1.
This provides more evidence towards the limitations of an l2
embedding. Indeed, trying to converge all 6000 samples per
class for CIFAR 10 and 600 samples for CIFAR 100 to the
same point in euclidean space (the class center) in the l2 sense
proves to be a difficult task which hampers overall network
performance. A cosine embedding consistently provides sig-
nificant improvement with the top performance being 5.04%
on CIFAR 10 for λ = 1, β = −1 and and 23.68% on CIFAR
100 for λ = 5, β = −0.5, thus showcasing its advantages.

Effect of margin β. We explore the effect of margin β
on Copernican loss. We fix λ = 0.1 for Copernican loss and
Center loss. Fig. 3(a) and Table 1 showcase the results of
these experiments. Note that a lower β tries to enforce more
discrimination. We find that a margin β = −1 and β = −0.5
perform the best on CIFAR 10 and 100 respectively. As a

6https://github.com/facebook/fb.resnet.torch

Table 1: Top 1 Test Error Rate (T.E.R) % on CIFAR 10+ and
CIFAR 100+ (+ denotes standard data augmentation as in (Huang
et al. 2016; He et al. 2016)). Numbers in brackets denote either (λ)
or (λ, β). l2-Copernican denotes the version which operates using
the Euclidean distance (baseline) as opposed to Cosine similarity
(proposed).

Method CIFAR 10+ CIFAR 100+
MaxOut (Goodfellow et al. 2013) 9.38 38.57
Drop Connect (Wan et al. 2013) 9.32
NiN (Lin, Chen, and Yan 2013) 8.81 35.68
FitNet (Romero et al. 2014) 8.39 35.04
DSN (Lee et al. 2015) 7.97 34.57
All-Conv(Springenberg et al. 2014) 7.25 33.71
Recurrent-Conv (Liang and Hu 2015) 7.09 31.75
ResNet (He et al. 2016) 6.43
Generalized Pooling 6.05 32.37
(Lee, Gallagher, and Tu 2016)
Large-Margin Softmax (Liu et al. 2016) 5.92 29.53
SoftMax 6.42 24.56
Center loss (0.1) (Wen et al. 2016) 6.67 24.89
Center loss (1) (Wen et al. 2016) 5.92 24.14
l2 Copernican (Ours) (0.1) 5.67 24.75
l2 Copernican (Ours) (1) 5.74 24.55
Copernican (Ours) (1, 0.5) 5.62 24.14
Copernican (Ours) (1,−0.1) 5.38 24.56
Copernican (Ours) (1,−1) 5.04 23.77
Copernican (Ours) (5,−0.1) 5.16 23.68
Copernican (Ours) (5,−0.5) 5.18 22.81

general observation, we found that if the number of classes
are high, a lower margin performs better.

Effect of loss weight λ. We explore the effect of λ on
Copernican loss with β = −0.1. Fig. 3(b) and Table 1 show-
case the results of these experiments. For CIFAR, we find
that a higher λ (≥ 1) improves performance for higher mar-
gin β. Setting λ to be high for very high β led to a decrease
in performance. Nonetheless, in all experiments with λ, the
entire range significantly outperformed Softmax loss. As a
rule of thumb, keeping λ low (around 0.1) for large scale ex-
periments (as we find in face recognition) with a low margin
works well, for smaller scale experiments (such as CIFAR),
a higher λ offers more performance.

Experiments in Large-Scale Face Recognition
We benchmark Copernican loss on two large scale face recog-
nition datasets namely LFW (Huang et al. 2007) and IJB-A
Janus (Klare et al. 2015). Face recognition is a challenging
task in general. This is because most benchmarks have a
large number of classes (above 10,000 classes), with each
class having a few number of samples (average 50 samples
per subject for CASIA-WebFace, compared to say 6000 for
CIFAR10). Such a task requires losses which can focus on
the interplay between the few samples from different classes
and is a good benchmark for comparison.

Towards Alignment-free Face Recognition. Most sys-
tems in face recognition utilize a landmark scheme for align-
ment (Schroff, Kalenichenko, and Philbin 2015; Taigman
et al. 2014; Tadmor et al. 2016; Wen et al. 2016). Indeed
facial alignment boosts the performance of a face recognition
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Figure 3: Top 1 Test Error on CIFAR 10 with varying (a) margin β within {−0.5,−0.1, 0.0, 0.1, 0.5} with λ = 0.1 and (b) λ within
{0.01, 0.1, 1, 5} with margin β = −0.1. (c) Top 1 Test Error for early epochs during training. Test error was a running average over 10 epochs
to reduce variance for clarity. Top and bottom show performance analogous to the settings of (a) and (b) respectively. We see that test error is
low for most settings of Copernican loss even during early training suggesting that cosine embeddings provide more informative gradients
early on as discussed in Sec. . This leads to faster convergence.
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Figure 4: ROC curve on the IJB-A Janus protocol. Copernican loss
outperforms Center loss. Performance reported while training and
testing on unaligned data.

engine by a significant amount which has led to saturation of
benchmarks such as LFW. Although alignment is useful in its
own right and also for real-world application, moving towards
alignment-free pipelines offers a huge room for improvement
and development and demonstration of more powerful meth-
ods. With this thought in mind, we restrict ourselves to the
extremely challenging protocol of being alignment-free and
utilizing minimal pre-processing of training and testing data
as we describe below.

Training and pre-processing. As mentioned, we utilize
no alignment in either training or testing and therefore do not
require any landmarking. All images we train and test on are
250 × 250 square crops centered on the face. For cropping
testing data, we utilized the bounding box provided, com-

puted the center of the box and cropped a 250 by 250 patch
around it. We train on the CASIA-WebFace (Yi et al. 2014)
database containing about 10,575 subjects and 494,414 im-
ages which were originally 250× 250. Therefore the images
were not processed any further and were only horizontally
flipped for data augmentation. Due to the absence of align-
ment, there were many images with considerable in-plane
rotation and/or slight scale variations which made the task
much harder than the traditional aligned face recognition
pipeline. This helps to showcase the efficacy of Copernican
loss. Lastly, 127 was subtracted from each pixel value and
the result was then divided by 127. We train models purely
on CASIA-WebFace and test them on LFW and IJB-A Janus
without any modification or finetuning.

Testing Benchmark: LFW. The LFW (Huang et al. 2007)
database contains about 13,000 images collected from the
web of 1680 distinct subjects. The database contains consid-
erable degradations such as illumination, color, and age along
with significant pose variation. We follow the unrestricted
outside training data protocol for LFW exactly.

Testing Benchmark: IJB-A Janus. IJB-A (Klare et al.
2015) is a new difficult and publicly available challenge.
IJB-A consists of 500 subjects under extreme conditions re-
garding pose, expression and illuminations with a total of
25,813 images. The IJB-A evaluation protocol mainly con-
sists of face verification (1:1) and face identification (1:N).
The interesting thing about this dataset is that each subject
is described by a template containing a set of images or
frames extracted from videos. We focus on the 1:1 tem-



Table 2: LFW results. Numbers in brackets denote either (λ) or (λ, β)

Method Training Data Alignment Accuracy (%)
FaceNet (Schroff, Kalenichenko, and Philbin 2015) 200M private Yes 99.65
Center loss (Wen et al. 2016) WebFace+0.2M private Yes 99.28
DeepFace (Taigman et al. 2014) 4.4M private Yes 97.35
DeepID (Sun, Wang, and Tang 2014) 88K Yes 97.45
Masi et. al. (Masi et al. 2016b) WebFace+2.4M synth Yes 98.06
Multi-batch(Tadmor et al. 2016) 2.6M Yes 98.20
Wang et. al. (Wang, Otto, and Jain 2015) WebFace Yes 97.52
Yi et. al. (Yi et al. 2014) WebFace Yes 97.73
DCNN (Chen, Patel, and Chellappa 2016) WebFace Yes 97.45
Center loss (Wen et al. 2016) (0.1) WebFace No 98.13
Copernican loss (0.1, 0.5) (Ours) WebFace No 98.27

Table 3: IJB-A Janus results. Numbers in brackets denote either (λ) or (λ, β)

Method Training Data Alignment VR (%) @ 0.1 FAR)
Wang et. al. (Wang, Otto, and Jain 2015) WebFace Yes 89.5
DCNN (Chen, Patel, and Chellappa 2016) WebFace Yes 80.0
DCNNft (Chen, Patel, and Chellappa 2016) WebFace Yes 88.3
DCNNft+m (Chen, Patel, and Chellappa 2016) WebFace Yes 94.7
DCNNft+m+c (Chen, Patel, and Chellappa 2016) WebFace Yes 96.1
DCNNfusion (Chen, Patel, and Chellappa 2016) WebFace Yes 96.7
PAM (Masi et al. 2016a) WebFace Yes 93.0
Chen et. al. (Chen et al. 2015) WebFace Yes 96.8
Center loss (Wen et al. 2016) (0.1) WebFace No 90.0
Copernican loss (0.1 0.5 ) (Ours) WebFace No 95.0

plate verification protocol. There are 10 splits with about
12,000 pair-wise template matches each resulting in a to-
tal of 117,420 template matches. To extract a score for
the template pair Ti, Tj , we utilize the following formula.

S(Ti, Tj) =
∑8
γ=1

∑
ta∈Ti,tb∈Tj

s(ta,tb) exp γs(ta,tb)∑
ta∈Ti,tb∈Tj

exp γs(ta,tb)
. Here

s(ta.tb) denotes the cosine similarity score between images
ta, tb.

Results. The results of these experiments are shown in
Table. 2 (LFW) and 3 (IJB-A). Fig. 4 shows the ROC curves
for IJB-A Janus. From Table. 2, we find that despite not
using alignment we achieve 98.27% on LFW which is higher
accuracy than many studies that train on far more data e.g.
(Tadmor et al. 2016; Wang, Otto, and Jain 2015; Taigman et al.
2014). We outperform Center loss trained without alignment
on CASIA-WebFace . From Fig. 4 and Table. 3, we find that
Copernican loss (95.0%) outperforms the baseline Center
loss (90.0%) on IJB-A Janus by a significant amount. Further,
our system trained with Copernican loss approaches the high
performance achieved by other methods while training on the
same dataset (CASIA-WebFace) while using no landmarks.
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