Stochastic CoSaMP: Randomizing Greedy Pursuit for
Sparse Signal Recovery: Appendix
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Abstract

Here we provide detailed proofs of results in the paper.

1 Proof of Lemma 3

Proof. We have F' = QQ U V. From the block inversion formula,
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The row corresponding to €2 (i.e.((@}q)F)—l)Q ) is given by
( Pxjo Qxjy ). Our strategy is to bound it from both sides, i.e. find bounds for ||Px/qg||> and
||Qx |2 and then use
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We have from Equation. and using Woodbury’s matrix inversion formula and assuming @3, ®y is
full rank,
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where T’ = (—(®5Pq) ' + 5Py (B Py) 1 DY P0).

Note that T is a scalar since |€)| = 1, however, treating it as a matrix does not change our final result.
Now from the reverse triangle inequality for any K -sparse signal v, we have
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using RIP bounds to upper bound the right term and utilizing ®5® = 1. We also use Cauchy-
Schwartz’s inquality in a sequential cascaded manner. We use these techniques (sequentially apply-
ing Cauchy-Schwartz’s followed by RIP) heavily from here on and in most of the bounds that we
obtain in our proofs. Thus, we have
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Now from Equation. [I0] we have
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We first find an upper bound for ||Qx|y||2
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We now bound ||Px|q||2 using RIP conditions and ®¢,®q = 1.
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From the previous two inequalities and Equation. [§|and also putting
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, we have
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QED

2 Proof of Theorem 1

Proof. Given T, we define F = (TNA*) C M and Z = T\ \* with |F| =y < Kand |Z| < |T| =
z, thus having T'= F U Z. We also have Q) C F with || = 1. Notethat FNZ = \*NZ = 0.
Also, we have by = (®%.®1) 1®%.®,.x. Putting &7 = [®pP 4]

Our strategy is to find a condition such that the lower bound for |[bjq||2 is greater than the upper
bound for ||b|y||2. This would force the true component €2 into the top K elements chosen during
pruning.
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using the block inversion formula

‘We therefore have,
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We are interested in comparing bjo = (P®5®,- + Q®5®,-)"x and bj; = (R®;Px- +
SP7, Py )x.

Before moving on, we digress briefly to obtain an upper bound on ||~ 1v||2, where v is K -sparse.
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Using Woodbury’s matrix inversion lemma, we have
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where, C = —~A;1 + ArzA,LAzp,
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Further, setting D = A, AzrC 'ArzA, sothat X~' = (A}, — D). Using RIP conditions
we obtain
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We now move on to upper bound |[b)z||2.
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One can use the restricted isometric property to bound || @3 ® - x||2 as follows.
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We upper bound both right hand terms and use inequality 42] Using Equation.[29] we obtain
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Using Proposition 3.1 and Proposition 3.2 (Approximate Orthogonality) from Nedell and Tropp [1],
we obtain a lower bound on the first term and upper bounds on the second and third terms. Recall

that F C \*, thus | F| < |\*| = K.
Using Equation. [31] we find
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Combining the previous two inequalities , we have
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We now find a lower bound for ||b|q||2.
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Using Equation. 27)and the reverse triangle inequality, we obtain a lower bound on the first term
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Here we use Lemma 1, along with Proposition 3.2 from Needel and Tropp [1].

Using Equation. 28] and the triangle inequality, we obtain an upper bound on the second term
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Here we use Lemma 1, Cauchy’s inequality and Proposition 3.2 from Needel and Tropp [1]. Com-

bining the last two inequalities and Equation. [51|we summarize,
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We now compare the lower bound on ||b|g||2 to the upper bound on ||b|z|[2, and also use the

triangle inequality on ||x||2. We arrive at the inequality
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Rearranging, we get
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Combining all scalars into 3, we arrive at

(64)
(65)
(66)

(67)

(63)

(69)

(70)

(71)



X0l

x|z ~

since |2] = 1. We find that 5 = 0 for {0x,02z} = 0z4x = 0and 8 = 0.68 for {dx,dz} <
0z+k < 0.1. Thus, for dz, x = 0, we would have

I[bjall2 > [|bjz]l2 (72)

Note that this holds for all VF' C A\* and V2 C F with || = 1. Now, |F'| < K, thus the set of top
K elements of b would always contain F'. Thus,

F C supp(br) = A

Thus trivially, in case of a perfect isometry, the top K elements would always contain F'. However,
for {0k,dz} < dz+k < 0.03, we find 8 = 0.1. Hence, signal components satisfying Equation.
would be included in the top K components picked during pruning in a particular iteration. In
particular, VQ2 € F' C \*, if Equation. [72] holds then,
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QED

3 Proof of Theorem 2

Proof. We have T = A\ N \* and 2 ¢ \’. Now from Theorem 2.4, 2 € \**1 i.e. Q2 is contained in
the new support estimate. Therefore, we have

T = AN (73)
> |(ATNAUQ| > AN AT = |1 (74)

The second inequality holds since there may exist multiple € s.t. x| is S-strong w.r.t some V.
Q.E.D
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