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Abstract. In this paper, we formulate the K-sparse compressed signal
recovery problem with the L0 norm within a Stochastic Local Search
(SLS) framework. Using this randomized framework, we generalize the
popular sparse recovery algorithm CoSaMP, creating Stochastic CoSaMP
(StoCoSaMP). Interestingly, our deterministic worst case analysis shows
that under the Restricted Isometric Property (RIP), even a purely ran-
dom version of StoCoSaMP is guaranteed to recover a notion of strong
components of a sparse signal, thereby leading to support convergence.
Empirically, we find that StoCoSaMP outperforms CoSaMP, both in
terms of signal recoverability and computational cost, on different prob-
lems with up to 1 million dimensions. Further, StoCoSaMP outperforms
several other popular recovery algorithms, including StoGradMP and
StoIHT, on large real-world gene-expression datasets.

1 Introduction

Sparse Signal Recovery. The fundamental problem of K-sparse signal recov-
ery from compressed samples is to identify the correct support over the measure-
ment matrix atoms or columns. Given an M × N measurement matrix Φ and
a set of M measurements in the form of the measurement vector y, we want to
determine an N -dimensional vector x, a K-sparse signal. Moreover, we want to
identify which K atoms of Φ (i.e., the support) were used to generate the signal.
Once the support is known, it is trivial to recover the signal using least squares
estimation. Looking at this problem naively, one sees that the problem is to pick
the right support among

(
N
K

)
different ones, which is known to be NP-hard [13].

Early sparse signal recovery algorithms for Compressed Sensing were greedy
pursuit algorithms, e.g., OMP [22], ROMP [14], and CoSaMP [15] (among oth-
ers such as GraDes [7], IHT [2], and AMP [6]). A key assumption that many
greedy pursuit recovery algorithms, including OMP and CoSaMP, make is that
Φ satisfies the Restricted Isometry Property (RIP) [4]. A Φ matrix that satisfies
RIP preserves the norm of K-sparse signals under its transformation, i.e., Φx.

Definition 1 (RIP). A real-valued matrix Φ satisfies the Restricted Isometry
Property (RIP) with constant δK if for all K-sparse vectors x we have

(1− δK)‖x‖22 ≤ ||Φx||22 ≤ (1 + δK)||x||22.
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OMP, ROMP, and CoSaMP all have a well-defined phase transition boundary
beyond which they begin to fail due to RIP breaking down. This is also because of
the inherent non-convexity of the search space as the recovery problems become
more difficult (higher sparsity K and more columns than rows for Φ). The phase
transition diagram characterizes the degree of difficulty of the recovery problem
and is parameterized by M , N , and K.

Stochastic Local Search (SLS). Stochastic Local Search (SLS) algorithms
seek to obtain approximate solutions for non-convex problems through random-
ization. SLS has long played a key role in state-of-the-art algorithms for tackling
NP-hard and other difficult computational problems [8]. Example problems for
which SLS algorithms are competitive include satisfiability of propositional logic
formulas [8]; most probable explanation in Bayesian networks [11]; and max-
imum a posteriori hypothesis in Bayesian networks [18]. SLS algorithms show
great variety [8], however they all use pseudo-randomness (often called “noise” in
the SLS literature) during initialization, local search, or both. Carefully balanc-
ing randomness and greediness typically has a dramatic and positive impact on
the run-time of SLS algorithms [20, 10], leading us to strive for similar positive
results for sparse signal recovery in this paper.

Related Work. A stochastic approach based on Threshold Accepting (a de-
terministic form of Simulated Annealing) has been developed [1]. This approach
uses an objective function as the product between the L1 norm and the spectral
entropy. A more direct method of randomizing atom selection has also emerged
[19], based on Matching Pursuit and OMP. Limitations of this work are exper-
imental validation using low-dimensional problems (up to 128 dimensions) and
modest theoretical insights. Another randomized approach to Matching Pursuit
uses a non-adaptive random sequence of sub-dictionaries in the decomposition
process [12]. More recently, StoGradMP [17] has focused on an approach similar
to ours, namely randomizing GradMP [16]. GradMP is a generalized version of
CoSaMP. However, StoGradMP is based on stochastic gradient descent, ran-
domly picking one support component at every iteration before projecting the
gradient onto a 2K dimensional subspace before merging. Under RIP, the algo-
rithm is shown to have exponential convergence in error on average.

Contribution. Our StoCoSaMP method is inspired by SLS and generalizes
CoSaMP. Thus, we randomly execute a greedy or a stochastic step at every it-
eration. During a stochastic step, we randomly choose 2K atoms to merge into
the support (see Section 2.1). In contrast to StoGradMP [17], which has only
been shown to handle problems with up to 1000 dimensions so far, we show Sto-
CoSaMP to be effective even in problems with up to 1 million dimensions. This
renders StoCoSaMP immediately available to real-world applications. Further,
StoGradMP requires a careful choice of the block size parameter which has a
significant impact on performance. StoCoSaMP also has a parameter, namely
the probability PR of a random step. However, as we find in our experiments,
StoCoSaMP’s performance is robust for a large range of values for PR.

In this paper, we make the following contributions:
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– We formulate the sparse recovery problem within an SLS framework and
propose a novel randomized version of CoSaMP: Stochastic CoSaMP (Sto-
CoSaMP). Key in StoCoSaMP is to randomize support selection: we ran-
domly choose 2K elements of the support, augmenting the greedy selection
through a signal proxy as in CoSaMP [15].

– In a worst case deterministic analysis of StoCoSaMP, we find that under
RIP, random support selection is sufficient for StoCoSaMP to recover β-
strong components of the true sparse signal. We also show that even a purely
random version of StoCoSaMP converges to the true support.

– In experiments with random Gaussian and Hadamard measurement matri-
ces, we demonstrate that StoCoSaMP is more efficient than and outperforms
CoSaMP for problems with up to 1 million dimensions.

– In experiments focused on the problem of classification of large-scale real-
world gene expression cancer datasets, we compare StoCoSaMP with Sto-
GradMP, StoIHT, CoSaMP, OMP, ROMP, IHT, and AMP. We find that
StoCoSaMP outperforms all of these algorithms in terms of test error.

2 Stochastic Local Search for Sparse Signal Recovery

2.1 Stochastic CoSaMP (StoCoSaMP)

Signal proxy and CoSaMP. A popular greedy recovery algorithm is CoSaMP
[15]. We generalize CoSaMP to Stochastic CoSaMP (StoCoSaMP) as presented
in Fig. 1. StoCoSaMP takes as input a measurement matrix Φ, a measurement
vector y, a sparsity level K, and the probability of a random step PR. It outputs
a sparse coefficient vector a.

StoCoSaMP invokes, with probability PR (line 6 in Fig. 1), a random step
(line 7 in Fig. 1). This random step complements the greedy optimization of
the most correlated atoms through the signal proxy (lines 9–10 in Figure 1);
see Definition 6. The random step randomly chooses 2K atoms to merge into
the current support set T (line 12 in Fig. 1). Lines 12 to 16 proceed exactly
like CoSaMP. CoSaMP maintains a constant sized support (size K) at every
iteration (while loop in Fig. 1) and hence can be represented in an SLS frame-
work (see Section 2.2). Theoretically, in Section 2.5, we find that a least squares
approximation provides guarantees that do not require a greedy selection such
as through the signal proxy. Example stopping criteria (line 3 in Fig. 1) are (i)
a maximum number of iterations and (ii) a threshold on the difference between
reconstruction errors in subsequent iterations.

We now introduce the framework for defining an SLS algorithm and proceed
to model StoCoSaMP in that framework.

2.2 Stochastic Local Search Framework

Definition 2 (General SLS model). An SLS model is a 4-tuple (S,Nb, G,O),
where: S is the set of all states in the search space; G : S → R is the objective
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1: StoCoSaMP (Φ,y,K, PR):
2: a0 ← 0, v← y, i← 0, T ← {} (Initialization)
3: while stopping criterion not satisfied do
4: i← i+ 1
5: r ← sample uniform U [0, 1]
6: if r < PR then
7: λ← Randomly choose 2K atoms to merge (Novel random step)
8: else
9: u ← ΦTv (Form signal proxy or estimate, i.e., Traditional greedy step from

CoSaMP)
10: λ← supp(u2K) (Identify 2K largest components)
11: end if
12: T ← λ ∪ supp(ak−1) (Merge supports)
13: b|T ← Φ†Ty (Estimate signal using least squares)
14: b|Tc ← 0 (Set the complement support to 0)
15: ai ← bK (Next approximation: keep largest K elements)
16: v← y −Φai

17: end while
18: return ai

Fig. 1. StoCoSaMP algorithm. supp(·) returns the indices of the non-zero atoms. Lines
6 and 7 contain the key randomization step distinguishing StoCoSaMP from CoSaMP.

or evaluation function; O is the set of optimal states, defined as O = {s∗|s∗ =
arg maxsG(s)}; and Nb denotes the neighborhood relation, i.e., Nb ⊆ S × S.

Sparse signal recovery can be framed as an SLS problem. We consider binary
vectors s ∈ BN . If si = 1, then the i-th atom or column is included in the support
estimate while if si = 0, then it is not. Thus, the cardinality of the search space
is |S| = |BN | = 2N . Typically, SLS techniques randomly alternate between a
greedy step and a random step. The greedy step usually enumerates the entire
neighborhood search space Nb and chooses the state which produces the lowest
error with respect to some objective function. Sometimes, the random step is
only invoked when the previous greedy step produced no improvement.

2.3 SLS for Sparse Signal Recovery

We consider a relaxed neighborhood relation definition as in Definition 3 in order
to utilize an efficient search method prevalent in sparse signal recovery: the signal
proxy [15]. The signal proxy results in a closed form search step of polynomial
complexity. CoSaMP and StoCoSaMP on the whole, at every iteration, search
for the next best K atoms for approximation. However, the signal proxy step
searches for the top 2K atoms. Thus, a relaxation in the neighborhood size is
required for modelling it in the SLS framework. This also results in StoCoSaMP
being modelled as two interconnected sub-models in the SLS framework (see
Definition 5 and Definition 6).



5

Definition 3 (Relaxed Neighborhood). For some η,K ∈ N, we define the

neighborhood relation NηK
b (s) = {s′ ∈ BN | ||s − s′||0 ≤ ηK} with a neighbor

threshold of ηK.

For binary vectors, the Manhattan distance between two vectors equals the
L1 distance. Also, η is chosen to model an algorithm. For CoSaMP and Sto-
CoSaMP, η = 2. This relaxation on the neighborhood size threshold from 2
to 2K enables using the signal proxy as the greedy element of the search. We
now model a sparse signal recovery algorithm in the SLS framework that is
constrained to maintain a fixed sized support of cardinality K.

Definition 4 (SLS model for K-sparse signal recovery). An SLS model

for K-sparse signal recovery is a 4-tuple (S,NηK
b , G,O), where: S is the set of all

states in the search space with each binary vector state s satisfying
∑N
i=1 si = K.

Lastly, NηK
b denotes the relaxed neighborhood function, i.e., NηK

b ⊆ S × S as
defined in Definition 3.

In the case of well-conditioned signal recovery problems, |O| = 1, i.e., there
exists a single unique solution to the problem [5], [3]. The framework remains
the same even if the solution is not unique.

2.4 StoCoSaMP in the SLS Framework

StoCoSaMP uses a polynomial complexity search step called the signal proxy
[22]. We utilize this technique to get around the computational bottleneck of the
standard SLS greedy step.

Signal proxy (line 9 in StoCoSaMP): An efficient greedy search.
Greedy sparse signal recovery utilizes the top γK components (for some γ ∈ N) of
the signal proxy. The signal proxy is defined as (ΦTv)γK , where (·)γK chooses the
top γK elements, and v is the current residue. The signal proxy is an efficient way
to determine the most likely active components in the residue. This provides an
efficient closed form solution to evaluate the greedy step with s∗ = arg maxsH(s)
where H(s) = ||(ΦTv) � s||1, with � denoting the Hadamard product. Recall
that s is a binary vector with γK non-zeros. Note that H depends on the residue
v and thus might change with every iteration.

Due to the incorporation of the signal proxy step, a relaxed neighborhood
definition was needed. This complicates the SLS model for StoCoSaMP since
there are now two different search spaces. One is the overall space of the top
K atoms for the current support estimate (line 15 in Fig. 1) and the other is
the selection of the top 2K atoms through the signal proxy (line 10 in Fig. 1).
StoCoSaMP therefore needs a more elaborate SLS model than given in Defini-
tion 4. We thus introduce two connected sub-models: Definition 5 models the
overall K-sparse support search of StoCoSaMP whereas Definition 6 models the
top 2K atom selection through the signal proxy.
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Definition 5 (Sub-model 1: SLS model for K-sparse signal recovery

with StoCoSaMP). This SLS model is a 4-tuple (S,NηK
b , G,O) and parame-

terizes Definition 4 with S = {s ∈ BN | ||s||1 = K}. Also, η = 2, therefore N2K
b

denotes the relaxed neighborhood function for S as in Definition 3. Definitions
for G and O remain the same.

Definition 6 (Sub-model 2: SLS model for support selection in Sto-

CoSaMP). The SLS model is a 4-tuple (S′, NηK
b , G′, O′s) and parameterizes

Definition 4 with S′ = {s′ ∈ BN | ||s′||1 = γK}. G′ : S × S′ → R where S
belongs to sub-model 1. G′s(s

′) = ||(ΦT (y − Φ(ai � s))) � s′)||1 where ai is the
current coefficient estimate (line 15 in StoCoSaMP) and G′s(s

′) is parameter-
ized by s′ ∈ S; O′s = {s′∗ | s′∗ = arg maxs′ G

′
s(s
′)} denoting the optimal state for

G′s(s
′), which is unique, i.e., |O′s| = 1. Lastly, with η = 2γ, N2γK

b denotes the
relaxed neighborhood function for S′ as in Definition 3.

In StoCoSaMP, the SLS technique is only explicitly used within S′ in Sub-
model 2 (for support selection) and not in S where the original problem lies.
However, as we explain Section 2.5, SLS effects in S′ allow StoCoSaMP to es-
cape local minima in S as well. In Sub-model 1, G is not evaluated explicitly
by the algorithm. G′ in Sub-model 2, however, is efficient to evaluate while be-
ing parameterized by s ∈ S = {s ∈ BN | ||s||1 = K}. Greedily optimizing G′

for s′∗ = arg maxs′ G
′
s(s
′), such that ||s′||1 = γK, offers the exponential recov-

ery guarantees that CoSaMP enjoys. These guarantees also arise due to a least
squares approximation in subsequent steps.

2.5 Analysis of StoCoSaMP

Since StoCoSaMP randomly picks a random step or a greedy step, a comprehen-
sive analysis of the phenomenon of escaping local minima is difficult. Experimen-
tally, we observe strong performance of StoCoSaMP as reported in Section 3.
Analytically, we have some but limited results as reported below.1

We first analyze the extreme cases PR = 0 and PR = 1, under RIP, before
discussing the general case 0 ≤ PR ≤ 1. Note that our analysis assumes RIP
only for PR = 0 and PR = 1. We only hypothesize a condition (when RIP breaks
down) under which local minima arise in the general case.

Special Case: PR = 0 (Purely Greedy Pursuit)

Lemma 1. When PR = 0, StoCoSaMP is equivalent to CoSaMP, i.e., CoSaMP
= StoCoSaMP(Φ,y,K, 0).

StoCoSaMP with PR = 0 enjoys the same exponential recovery guarantees
as CoSaMP [15]. Unfortunately, it also inherits the propensity of CoSaMP to
get trapped in local optima that may not be global.

1 Proofs of all results not found here will be included in the full version of this paper.
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Special Case: PR = 1 (Purely Random Pursuit) The primary goal here
is to show that even if PR = 1, StoCoSaMP will retain strong components per
Definition 2.5.

Lemma 2. When PR = 1, StoCoSaMP is equivalent to a random walk or a
purely random pursuit.

We have Φ as a normalized matrix with the RIP constant δK for K-sparse
signals. Let x ∈ RN be a K-sparse vector. The following two definitions model
lines 13 in Fig. 1 and the true support and the current support estimate supp(bK)
respectively.

Definition 7 (Least Squares Estimate). For any randomly selected or
arbitrary support set T (see lines 6 and 7 of StoCoSaMP) with |T | = 2K, the
least squares estimate for the signal at any particular iteration b is defined as
b|T = Φ†Ty together with b|T c = 0.

Definition 8 (True Support and Current Support). We define the true
support to be λ∗ = supp(x) and the current support to be λ = supp(bK) where
bK is the best K-sparse approximation of b at the current StoCoSaMP iteration.

The following notion of strong components will prove useful in our analysis
(see Theorem 1 and Theorem 2).

Definition 9 (β-Strong Component w.r.t. Ψ). We define a true signal com-
ponent xΩ (|Ω| = 1) to be β-strong w.r.t. Ψ , if for a subset Ψ ⊂ λ∗ of the indices

of the true components, with |Ψ | ≤ K − 1 and Ω /∈ Ψ , we have
|x|Ω |
||x|Ψ ||2

≥ β.

Notation: We now define notations for the rest of Section 2.5. We denote, for
one iteration of StoCoSaMP, a selected support by λ. For the analysis, we also
define Ω ∈ F = {T ∩λ∗} with |Ω| = 1; F represents the true components in the
current support estimate. Z = T \λ∗ represents the rest of the false components
in the current support set T , which are not active in the actual signal. Lastly
Ψ = F\Ω for every iteration of the random step (lines 6 and 7 of StoCoSaMP).

The following lemma is useful in proving Theorem 1.

Lemma 3. We have

||((Φ∗FΦF )−1)Ωx||2 Q
(
1± δ2Kη

)
|x|Ω | ± η||x|Ψ ||2

where η =
(

δK
1−δK−1−δ2K

)
and ((Φ∗FΦF )−1)Ω corresponds to the Ωth row of

(Φ∗FΦF )−1. Further, we assume Φ∗ΨΦΨ is full rank and that Φ has normalized
columns.

Lemma 3 involves two inequalities which have been combined in one state-
ment. It is useful since it bounds the projection of x onto the Ωth row of
(Φ∗FΦF )−1. We now present our main result.
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Theorem 1. (Retaining Strong True Support). For StoCoSaMP with PR =
1, if δZ ≤ δZ+K ≤ 0.03, δK ≤ δZ+K and x|Ω is β-strong w.r.t. Ψ with β = 0.1,
then Ω ∈ λ.

Interestingly, under RIP, Theorem 1 shows that even if an algorithm is not
greedy and always picks a random support, β-strong true components of the
signal present in the current support (w.r.t. to the other true components) are
guaranteed to be retained. Our proof strategy is to find a condition such that
the lower bound for ||b|Ω ||2 is greater than the upper bound for ||b|Ψ ||2. This
forces the true component Ω into the top K elements chosen during pruning.
We find the lower and upper bounds through RIP.

When the sparse signal is exactly K-sparse, the β-strong constraint might
seem restrictive, since it only allows components stronger w.r.t. the rest of the
components by a factor of β to be recovered. However, in the case of general
signals, where the true sparse vector contains noise, the β-strong constraint is
more easily satisfied due the presence of very small noisy components. Thus, the
K large components are more likely to be recovered.

Support convergence under β-strong condition: Now let Υ i be the set
of true components in the support estimate at the ith StoCoSaMP iteration, i.e.,
Υ i = λi ∩ λ∗. Thus, at every iteration, we would like |Υ | to increase up until
the desired cardinality of the support, (i.e., K). We have the following result on
support convergence.

Theorem 2. (Support Convergence for Purely Random StoCoSaMP)
For StoCoSaMP with PR = 1, i.e., a purely random pursuit, if {δK , δZ} ≤
δZ+K ≤ 0.03 and ∃x|Ω in support T i at iteration i, such that x|Ω is β-strong
w.r.t. some Ψ with β = 0.1 and Ω /∈ λi, then |Υ i+1| ≥ |Υ i|.

Theorem 2 shows that even for StoCoSaMP’s purely random case (PR = 1),
the support estimate does not worsen as the algorithm progresses. There will
be no improvement when β-strong components are not present: the support
estimate does not change. These results are deterministic since they analyze the
worst case and are stronger guarantees than the average case analysis typical
of randomized algorithms. For 0 < PR < 1, the greedy step has already been
shown to have exponential reduction in error [15], thus the results presented here
ensure that the algorithm does not diverge while executing a random step.

Theorem 2 is a contrast to earlier results suggesting that greed is important
for recoverability [21]. Although a greedy algorithm might have stronger guar-
antees for recoverability, random support selection allows for practical improve-
ments (analogous to those in the SLS literature) in situations where RIP breaks
down, (e.g., past the phase transition boundaries of greedy pursuits). Note that
in such a case, Theorem 1 will not hold and StoCoSaMP, like CoSaMP, currently
has no theoretical guarantees. The SLS properties of StoCoSaMP then assume
a larger role, which is difficult to analyze theoretically.2

2 Indeed, in our experiments, we find that for PR = 1, when RIP breaks down, Sto-
CoSaMP does not perform well. A few greedy steps are needed for convergence (see
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General Case: 0 ≤ PR ≤ 1 (Randomized Greedy Pursuit) With 0 ≤
PR ≤ 1, under RIP, the individual theoretical guarantees of greedy and random
steps still hold. However, when RIP does not hold, the random effects of the SLS
model S from Definition 5 become interesting. We now define an active variable
for use in the informal discussion about escaping local minima.

Definition 10 (Active Variable). Let y = Φx where x ∈ RN is a K-sparse
vector. Then the set A = {i | |xi| > 0} is called the active set, and the corre-
sponding i-th element of x is called an active variable.

Assume that a column or atom τ of Φ is approximately linearly dependent
on some other set of columns Γ belonging to Φ, i.e., φ|τ ≈

∑
i∈Γ αiφi for some

αi. Now, if the signal had each element in Γ as its active variable, but not τ , then
the signal proxy ΦTv (line 9 in StoCoSaMP) forces CoSaMP (and StoCoSaMP)
to pick τ . The atom τ can be said to be “stronger” than the atoms in the set
Γ since τ is more likely to be picked by the signal proxy rather than the true
atoms in Γ . This is because picking τ explains much more of the signal.

In this situation, when a “stronger” component τ exists w.r.t. a set Γ , the
search falls into a local minimum. It would be hard to drop τ from the support
estimate, as it approximately explains the components Γ in the signal by itself.
This is where StoCoSaMP randomness could help. In randomly choosing 2K
atoms from Φ, it is more likely than in a greedy setting that the algorithm
might pick a few atoms that are active and “weak” compared to some other
atom. Once CoSaMP (and StoCoSaMP) chooses a variable, it explains away
that component. Thus, the random step in StoCoSaMP (for 0 < PR ≤ 1) helps
the search to avoid being trapped in a local minimum.

This effective dodging of local minima acts even when RIP might not hold.
However, in the case where RIP does hold for Φ, Theorem 1 shows that greed is
not necessary for recovering β-strong components of the signal w.r.t. Ψ . In many
of our experiments, such as the real-world gene expression data (Section 3.5),
we do not check for the RIP condition, but StoCoSaMP still works well.

3 Experimental Results

3.1 Phase Transition Diagrams

Goal. The goal of this experiment is to investigate whether StoCoSaMP can
solve a broader and harder range of problems compared to CoSaMP. Specifically,
we seek to reconstruct K-sparse i.i.d. Gaussian signals with no noise added.

Method and Data. The inherent dimensionality of the problem was set
to N = 200. The measurement matrices were i.i.d. sampled from the standard

Fig. 4(a)). Nonetheless, in experiments in Section 3 we find that StoCoSaMP con-
verges towards the true solution even in large dimensions for high PR = 0.9 but
not for PR = 1 (see Fig. 4(a)). In most cases, we find empirically that StoCoSaMP
converges on average faster than CoSaMP.
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(a) Phase transition diagram
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Fig. 2. (a) Phase transition boundary diagrams (showing probability of signal recovery)
for CoSaMP and StoCoSaMP (with PR = 0.3). (b) Effect of varying the probability of
the random step PR, along the x-axis, on StoCoSaMPs signal recoverability, along the
y-axis, for Gaussian measurement matrices. CoSaMP is PR = 0 in (b).

normal distribution, N (0, 1). For StoCoSaMP, PR = 0.3.3 As is standard in the
literature [9], intrinsic recovery capability of the algorithm was measured in a
noiseless setting with a 90% threshold in probability of recovery.

Results. We compare the phase transition diagrams of CoSaMP and Sto-
CoSaMP in Fig. 2(a). The x-axis is α = M/N and the y-axis is ρ = K/M , where
K is the sparsity and M,N are the dimensions of Φ. If a point is below the tran-
sition boundary, problems of that setting are considered solved given a threshold
for the probability of recovery (90%). The axes denote gradual change in dif-
ficulty, with the most difficult setting being the top left corner and the easiest
being the bottom right corner. Fig. 2(a) shows that StoCoSaMP clearly improves
on the phase transition region over CoSaMP, especially for 0.35 ≤ α ≤ 0.5.

3.2 Effect on Recoverability: Random Gaussian Matrices

Goal. The goal of this experiment is to compare the performance of CoSaMP
and StoCoSaMP for a broad range of PR-values.4 This will (i) shed light on the
problem of local optima in sparse signal recovery and (ii) provide an experimental
counter-point to Theorem 1.

Method and Data. We constructed 100 normalized synthetic signal recov-
ery problems; the M ×N measurement matrix was sampled i.i.d. from N (0, 1).
Then, by varying PR, we examine the percentage of successful recoveries for Sto-
CoSaMP (recovered SNR > 50 dB). We investigate a challenging point on the

3 For all experiments, we set the maximum number of iterations for both CoSaMP
and StoCoSaMP generously to 250.

4 For comparative results on real-world data please refer to Sec. 3.5
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phase transition, specifically α = 0.6 and ρ = 0.5 (see Fig. 2(a)). The dimen-
sionality is varied from N = 200 to N = 5000.

(a) N = 200 (b) N = 500 (c) N = 1000

Fig. 3. Effect of varying the random step probability PR (x-axes) on the mean wall
clock run time (y-axes). CoSaMP is PR = 0. The reduction in mean wall clock time is
relatively small, but comes in addition to improved accuracy (see Fig. 2(b)).

Results. Fig. 2(b) illustrates the serious handicap of purely greedy pursuits
in escaping local optima. Specifically, Fig. 2(b) shows that at α = 0.6 and ρ
= 0.5, CoSaMP (PR = 0) performs poorly.5 For 0.1 ≤ PR ≤ 0.9, StoCoSaMP
tends to succeed significantly more often. For these lower dimensions, even a
purely random walk (PR = 1) performs better than CoSaMP (PR = 0), owing to
SLS properties and Theorem 1 (random Gaussian matrices are known to satisfy
RIP). The result, though perhaps initially surprising, is consistent with previous
studies of the role of randomization in hard combinatorial problems. In problems
of high difficulty, the expected time to find a global optimum is minimized when
search is close to a random walk [10].

Fig. 3(a)-Fig. 3(c) show the mean wall clock run time for the convergence over
these 100 problems as PR in StoCoSaMP was varied. Since the time complexity
of a single random step is lower than that of a single greedy step, the overall
computational time generally decreases as we increase PR. Hence, StoCoSaMP
can not only outperforms CoSaMP in terms of recoverability, but also in terms
of computation time for a significant range of PR.

3.3 Effect on Recoverability: High-Dimensional Problems

Goal. To handle high-dimensional data such as images or spatio-temporal data,
we experiment with Hadamard matrices with up to 1 million dimensions.

Method and Data. We use sets of randomly permuted rows of the Hadamard
matrix as the measurement matrix, and set α = 0.1 and ρ = 0.05, giving us rea-

5 We consider a recovery successful if the SNR of the recovered sparse signal to the
ground truth is above a certain threshold (50 dB for this experiment).
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Fig. 4. Effect of varying PR, along x-axis, on: (a) StoCoSaMP’s signal recoverability
for randomly permuted Hadamard measurement matrices and (b) the mean number of
iterations required for convergence by StoCoSaMP. PR = 0 is CoSaMP.
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(c) Error distr.: 33 dB
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Fig. 5. Histograms of recovery errors (top row) and SNRs (bottom row) for CoSaMP
(green), StoCoSaMP (blue), CoSaMP+SWAP (black), and StoCoSaMP+SWAP (red),
for different levels of noise (50 dB, 40dB, or 33dB) added to the measurement vector.
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Table 1. Mean (µ) and Standard deviations (σ) of recovery errors and SNRs for
the comparison of CoSaMP, StoCoSaMP and SWAP initialized by each algorithm
(denoted by CoSaMP+SWAP and StoCoSaMP+SWAP), under different noise added
to measurement vector (SNR in dB). For a given SNR level, bold and italics signify
the best and the second-best results respectively.

SNR Algorithm µError σError µSNR σSNR

50 CoSaMP 0.1135 0.0803 13.934 18.393
StoCoSaMP 0.0334 0.0784 37.954 14.595
CoSaMP+SWAP 0.0735 0.0527 15.923 20.543
StoCoSaMP+SWAP 0.0216 0.0516 42.157 15.942

40 CoSaMP 0.1031 0.0719 13.222 13.749
StoCoSaMP 0.0600 0.0748 24.157 14.002
CoSaMP+SWAP 0.0665 0.0478 15.134 15.634
StoCoSaMP+SWAP 0.0390 0.0508 27.471 15.624

33 CoSaMP 0.1189 0.0678 9.633 10.589
StoCoSaMP 0.0625 0.0652 20.974 9.718
CoSaMP+SWAP 0.0781 0.0473 11.331 12.254
StoCoSaMP+SWAP 0.0401 0.0441 24.179 10.887

sonable values for the sparsity K and the number of measurements M . We sim-
ulate 100 different problems, and define a strict SNR threshold for a successful
recovery at 120 dB.

Results. Fig. 4(a) reports success rates, while Fig. 4(b) reports the number
of iterations. The figures suggest that the advantages, both in terms of success
rate and computation time (iterations), of StoCoSaMP over CoSaMP are not
restricted to the lower-dimensional case. For success rate (see Fig. 4(a)), the ad-
vantage of StoCoSaMP over CoSaMP is very clear for the high-dimensional cases
of N = 100K (blue line) and N = 1 million (black line).6 In image processing
applications, for example, N = 1 million is typical. As seen in Fig. 4(a), at these
high dimensions, a purely random pursuit (PR = 1) fails in many cases, whereas
0.1 ≤ PR ≤ 0.9 does much better.

Using 0.1 ≤ PR ≤ 0.6, StoCoSaMP also gives faster convergence than
CoSaMP (PR = 0) in terms of number of iterations, see Fig. 4(b). This and
the results of the previous experiment in Section 3.2 experimentally validate
Theorem 1. From this and the previous experiment, it seems that recoverability
is best when StoCoSaMP employs a combination of greedy and random steps.
To the practitioner, we suggest to use 0.2 ≤ PR ≤ 0.6, where both high suc-
cess rates and computational gains are apparent.7 The theoretical justification
is unclear and would be interesting to explore in future work.

6 The variation of success for different dimensions for both StoCoSaMP and CoSaMP
is inherent to the performance characteristics of CoSaMP itself.

7 This does not hold for the smallest N = 1K problems, which on the other hand are
the least interesting from a scalability point of view.
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Fig. 6. 10-fold cross-validation testing error on the gene-expression datasets for (a)
Leukemia data (72× 5147) (b) and Prostate data (102× 12533).

3.4 Effect of Noise on Recoverability

Goal. We now focus on noisy measurement signals. We also evaluate the per-
formance of SWAP when it is initialized by CoSaMP and StoCoSaMP. SWAP
is a greedy algorithm; it can be used to fine-tune the solutions of other recovery
algorithms [2]. Here, we use SWAP to investigate whether a solution obtained
by StoCoSaMP on average lies in a better basin than a solution obtained by
CoSaMP. Intuitively, SWAP’s explicit greediness forces the solution within each
basin towards the local optimum of that particular basin.

Method and Data. We experiment with three noise levels in the measure-
ment vector 50 dB (low noise), 40 dB, 33 dB (high noise). We construct 100
synthetic problems with the measurement matrix and the sparse vectors being
sampled i.i.d. from N(0, 1). We add varying amounts of white Gaussian noise
to our measurement vectors, such that the SNR is at one of the three levels of
noise. For all problems, we set PR = 0.3 in StoCoSaMP and N = 200.

Results. We report the error and SNR statistics and the corresponding
histograms for the four algorithmic combinations in Table 1 and Fig. 5. Table 1
suggests that StoCoSaMP achieves higher quality recoveries (SNR) on average
compared to CoSaMP over all problems (SNR≥ 33 dB) in the presence of varying
levels of noise. In fact, StoCoSaMP in most cases performs better on average
than SWAP initialized with CoSaMP. This is powerful, since StoCoSaMP is also
computationally less expensive than either CoSaMP (purely greedy) or SWAP
(exponential complexity). The histogram plots in Fig. 5 clearly show that both
StoCoSaMP and StoCoSaMP + SWAP tend to achieve much lower errors than
their CoSaMP counterparts. This experiment suggests that the advantages of
StoCoSaMP extend to situations with significant noise.
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3.5 Real-World Data: Classifying Gene Expression

Goal. To evaluate StoCoSaMP’s real-world classification performance, we study
two large-scale gene expression cancer datasets. We compare StoCoSaMP, Co-
SaMP, StoGradMP, StoIHT, OMP, ROMP, IHT, and AMP.

Method and Data. The datasets contain the gene expression levels for
leukemia (M = 72 and N = 5147) and prostate cancer (M = 102 and N =
12533) with a binary label.8 This is a classification problem where unseen gene
expression values are to be classified. We learn a K-sparse linear classifier for this
experiment. The labels act as the signal to be expressed as a linear combination of
the gene expressions. The linear combination is parameterized by a weight vector
that is recovered by a sparse signal recovery algorithm. Following a previous
study [23], we explore sparsities ranging from K = 2 to K = 10.

AMP determines the sparsity level internally through soft thresholding. For
AMP, unlike for the other algorithms, we do not enforce K-sparsity. We per-
form 10-fold cross validation for each level of sparsity (20 trials for StoCoSaMP,
StoIHT and StoGradMP for each sparsity) with PR = 0.5 for StoCoSaMP. For
StoGradMP and StoIHT, we set the block size to min(K,M) as in previous work
[17]. We then pick the classifier (sparse solution) that minimizes the training er-
ror as our model for testing for all stochastic algorithms.

Results. Fig. 6(a) and Fig. 6(b) show the experimental results for all algo-
rithms for the two datasets. StoCoSaMP’s results (black line) are a consistent
improvement over all other algorithms (including StoGradMP) in all cases. AMP
achieved an error of 11.10 (with K = 62) on the Leukemia dataset and 31.35
(with K = 89) on the Prostate dataset, worse than StoCoSaMP. StoIHT per-
formed worse in all cases and reported an error consistently above 10, and is not
plotted in the figure.

4 Conclusion

In this paper, we present a Stochastic CoSaMP (StoCoSaMP) method. Under
RIP, even a purely random version of StoCoSaMP (PR = 1) will observe support
convergence. This provides an interesting addition to previous results, which
have suggested that greed is good for recovery [21]. Our experiments show that
StoCoSaMP out-performs CoSaMP on a variety of signal recovery problems, and
other algorithms (including CoSaMP, StoGradMP and StoIHT) on a real-world
large scale classification task.

Acknowledgements. We thank Aswin C. Sankaranarayanan for his helpful
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