

Learning Non-Parametric Invariances from Data with Permanent Random Connectomes

Dipan K. Pal and Marios Savvides

Carnegie Mellon University

Motivation

To be invariant to nuisance transformations in data, we would require

- Knowledge of the added transformations apriori
- A different network architecture, invariant for each nuisance transformation (inductive bias)

PRC-NPTNs advantages:

- No apriori knowledge of nuisance transformations is required.
- No change in architecture required. The exact same network can adapt to different transformations.

Loose Biological Motivation:

- Cortex lacks precise local pathways for backprop
- Unstructured local connections are common
- Can be invariant towards combinations of *transformations.* A rich set of invariances can be invoked *explicitly* through the architecture.

Do permanent random connections actually *improve* generalization in deep networks?

Permanent Random Connectome Networks

Top left: Invariances can invoked for individual transformations by pooling over each. Top right: Invariances to multiple transformations through permanent random support pooling. Bottom left: Permanent random support when vectorized leads to permanent random channel pooling. Bottom right: Most architectures offer only parametric invariance

Left bottom: Transformation Networks were introduced as a general framework for modelling feedforward convolutional networks.

Right. Each input channel is convolved with a number of filters (parameterized by G). Each of the resultant activation maps is connected to a one of the channel max pooling units randomly (initialized once, fixed during training and testing). Therefore, each channel pooling unit pools over a fixed random support.

Experimental Validation

Rotation	0°	***	90°	***	Rot/Trans	0° 0	15° 2	30° /	15° 6	60° 8	75° 10	00° 12
ConvNet (36)	0.70 ± 0.02	_	1.93 ± 0.02	_		00	10 2	50 4	40 0	00 0	10 10	30 12
ConvNet (36) EC	0.66 ± 0.05		1.58 ± 0.02		ConvNet (36)	$0.68_{\pm 0.03}$	$0.72_{\pm 0.02}$	$1.31_{\pm 0.02}$	$2.32_{\pm 0.04}$	$5.06_{\pm 0.04}$	$10.90_{\pm 0.08}$	$19.60_{\pm 0.16}$
ConvNet (512)	0.00 ± 0.05		1.50 ± 0.01		ConvNet (36) FC	0.64 ± 0.03	0.66 ± 0.01	$0.95_{\pm 0.04}$	1.50 ± 0.02	$3.42_{\pm 0.03}$	$8.14_{\pm 0.11}$	$15.61_{\pm 0.11}$
Convinet (512)	0.05 ± 0.04	-	1.34 ± 0.03		ConvNet (512)	0.66 ± 0.05	0.65 ± 0.02	0.97 ± 0.02	1.60 ± 0.04	3.50 ± 0.04	7.90 ± 0.06	$15.19_{\pm 0.00}$
NPTN (12,3)	0.68 ± 0.06	-	1.64 ± 0.02	-	NDTN (12.2)	0.00 ± 0.00	$\frac{0.00 \pm 0.02}{0.60}$	$\frac{0.01 \pm 0.02}{1.07}$	1.00 ± 0.04	$\frac{0.00\pm0.04}{4.04}$	0.50 ± 0.00	17.70
PRCN (36,1)	0.62 ± 0.08	0.62 ± 0.06	$1.72_{\pm 0.05}$	$1.73_{\pm 0.06}$	$\frac{1}{12,3}$	0.00 ± 0.02	0.09 ± 0.03	1.07 ± 0.03	1.80 ± 0.02	4.24 ± 0.11	9.38 ± 0.06	17.79 ± 0.16
PRCN (18.2)	0.61 ± 0.02	0.57 ± 0.02	1.24 ± 0.01	1.33 ± 0.02	PRC-NPTN (36,1)	$0.61_{\pm 0.03}$	$0.70_{\pm 0.01}$	$1.09_{\pm 0.04}$	$1.80_{\pm 0.02}$	$3.93_{\pm 0.02}$	$9.09_{\pm 0.11}$	17.03 ± 0.13
PRCN(12.3)	0.58 ± 0.02	0.62 ± 0.02	$1.28_{\pm 0.01}$	$1.33_{\pm 0.01}$	PRC-NPTN (18,2)	$0.57_{\pm 0.02}$	$0.58_{\pm 0.01}$	$0.77_{\pm 0.02}$	$1.21_{\pm 0.07}$	$2.74_{\pm 0.04}$	$6.78_{\pm 0.12}$	$13.79_{\pm 0.08}$
PRCN(9.4)	0.63 ± 0.03	0.62 ± 0.04	$1.31_{\pm 0.03}$	1.40 ± 0.01	PRC-NPTN (12,3)	$0.59_{\pm 0.03}$	$0.58_{\pm 0.01}$	$0.78_{\pm 0.02}$	$1.26_{\pm 0.02}$	$2.91_{\pm 0.05}$	$7.13_{\pm 0.09}$	$14.23_{\pm 0.07}$
Translations	0 pixels	***	12 pixels	***	PRC-NPTN (9,4)	$0.63_{\pm 0.04}$	$0.59_{\pm 0.02}$	$0.81_{\pm 0.02}$	$1.35_{\pm 0.02}$	$3.12_{\pm 0.02}$	$7.26_{\pm 0.02}$	$14.62_{\pm 0.16}$

PRCN (18,2)	$0.61_{\pm 0.02}$	$0.57_{\pm 0.02}$	$1.24_{\pm 0.01}$	$1.33_{\pm 0.02}$
PRCN (12,3)	$0.58_{\pm 0.03}$	$0.62_{\pm 0.04}$	$1.28_{\pm 0.01}$	$1.33_{\pm 0.01}$
PRCN (9,4)	$0.63_{\pm 0.02}$	$0.62_{\pm 0.04}$	$1.31_{\pm 0.03}$	$1.40_{\pm 0.03}$
Translations	0 pixels	***	12 pixels	***
ConvNet (36)	$0.69_{\pm 0.04}$	-	$4.43_{\pm 0.05}$	-
ConvNet (36) FC	$0.60_{\pm 0.02}$	-	$3.49_{\pm 0.11}$	
ConvNet (512)	$0.63_{\pm 0.02}$	_ ·	$3.56_{\pm 0.04}$	-
NPTN (12,3)	$0.66_{\pm 0.02}$	-	$4.19_{\pm 0.04}$	_
PRC-NPTN (36,1)	$0.65_{\pm 0.02}$	$0.65_{\pm 0.05}$	$3.85_{\pm 0.11}$	$3.83_{\pm 0.10}$
PRC-NPTN (18,2)	$0.59_{\pm 0.07}$	$0.59_{\pm 0.03}$	$3.23_{\pm 0.03}$	$3.34_{\pm 0.06}$
PRC-NPTN (12,3)	$0.63_{\pm 0.02}$	$0.66_{\pm 0.08}$	$3.35{\scriptstyle \pm 0.04}$	3.52 ± 0.12
PRC-NPTN (9,4)	$0.65_{\pm 0.02}$	$0.69_{\pm 0.03}$	$3.49_{\pm 0.46}$	$3.69_{\pm 0.08}$

EXP B (Above): Simultaneous Transformations. PRC-NPTNs can achieve better generalization to rotation and extreme translation *simultaneously* due to permanent random support pooling. For PRC-NPTN and NPTN the brackets indicate the number of channels in the layer 1 and G.

EXP C (Bottom): DenseNets with Permanent Random Connectomes. PRC-NPTNs can be applied as a drop in replacement to conv layers. When applied to DenseNets, they provide clear generalization benefits. Permanent random connectomes seem to significantly help in generalizing DenseNets.

EXP A (Above): Individual Transformations. Test error statistics with mean and standard deviation on MNIST with progressively extreme transformations with a) random rotations and b) random pixel shifts. *** indicates ablation runs without any randomization i.e. without any random connectomes (applicable only to PRC-NPTNs). Permanent and random channel pooling provides generalization benefits.

Method	CIFAR10	(w/o Random)	CIFAR 10++	(w/o Random)
DenseNet-Conv	$11.47_{\pm 0.19}$	-	$21.37_{\pm 0.29}$	-
DensePRC-NPTN (CMP=1)	$11.82_{\pm 0.20}$	$13.33_{\pm 0.23}$	$22.03_{\pm 0.08}$	$23.88_{\pm 0.38}$
DensePRC-NPTN (CMP=2)	$10.78_{\pm 0.31}$	$11.67_{\pm 0.36}$	$20.71_{\pm 0.23}$	$21.90_{\pm 0.33}$
DensePRC-NPTN (CMP=3)	$10.95_{\pm 0.12}$	11.59 ± 0.23	$20.95_{\pm 0.20}$	$21.80_{\pm 0.42}$
DensePRC-NPTN (CMP=4)	$10.61_{\pm 0.11}$	$11.41_{\pm 0.12}$	$20.80_{\pm 0.12}$	$21.47_{\pm 0.16}$