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Motivation

Permanent Random Connectome Networks

Experimental Validation

To be invariant to nuisance transformations in data, 
we would require
- Knowledge of the added transformations apriori
- A different network architecture, invariant for 
each nuisance transformation (inductive bias)

PRC-NPTNs advantages:
● No apriori knowledge of nuisance transformations 

is required. 
● No change in architecture required. The exact 

same network can adapt to different 
transformations.

● Can be invariant towards combinations of 
transformations. A rich set of invariances can be 
invoked explicitly through the architecture.

Loose Biological Motivation:
● Cortex lacks precise local pathways for backprop
● Unstructured local connections are common

Do permanent random connections actually improve generalization in deep networks?

Top left: Invariances can invoked for individual transformations by pooling over 
each. Top right: Invariances to multiple transformations through permanent 
random support pooling. Bottom left: Permanent random support when 
vectorized leads to permanent random channel pooling. Bottom right: Most 
architectures offer only parametric invariance

EXP A (Above): Individual Transformations. Test error statistics with 
mean and standard deviation on MNIST with progressively extreme 
transformations with a) random rotations and b) random pixel shifts. *** indicates 
ablation runs without any randomization i.e. without any random connectomes 
(applicable only to PRC-NPTNs).  Permanent and random channel pooling 
provides generalization benefits. 

EXP B (Above): Simultaneous Transformations.  PRC-NPTNs can achieve better generalization to 
rotation and extreme translation simultaneously due to permanent random support pooling. For PRC-NPTN and 
NPTN the brackets indicate the number of channels in the layer 1 and G.
EXP C (Bottom): DenseNets with Permanent Random Connectomes.  PRC-NPTNs can be 
applied as a drop in replacement to conv layers. When applied to DenseNets, they provide clear generalization 
benefits. Permanent random connectomes seem to significantly help in generalizing DenseNets.

Left bottom: Transformation Networks were introduced as a general framework for 
modelling feedforward convolutional networks.

Right. Each input channel is convolved with a number of filters (parameterized by 
G). Each of the resultant activation maps is connected to a one of the channel max 
pooling units randomly (initialized once, fixed during training and testing). Therefore, 
each channel pooling unit pools over a fixed random support.


