
Neural Architectures Towards

Invariant Representation Learning

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Dipan K. Pal

B.E., Electronics and Communications Engineering Department

Birla Institute of Technology, Mesra, India

M.S., Electrical and Computer Engineering Department

Carnegie Mellon University, Pittsburgh, USA

Carnegie Mellon UniversityPittsburgh, PA

December 2020

©Dipan K. Pal, 2020

All Rights Reserved

To my mom and dad, Preeti and Sudip Pal

Acknowledgments

First, I would like to thank my advisor and the chair of my doctoral committee

Prof. Marios Savvides for taking me into his lab and giving me the opportunity

to do this. Over the years, he and the lab in general have helped me realize the

importance of engineering and what kind of real impact such engineering can indeed

have. Storytelling is a great and useful art that few realize the importance of. It

was early in my career when he showed me how a good story helps have a more

effective connection with the listener. His style has certainly influenced mine over

these years. Perhaps, the biggest support that Prof. Marios provided over these

years was almost complete academic freedom. He let me pursue whatever problem I

wished to work on even though a few of these had no direct practical impact to the

lab. During times when I was struggling to get my work published, he reassured his

belief in me and my work. This patience and freedom let me hone one of the most

important skills as a researcher, how to pick a problem to work on. I am deeply in

debt to him for his guidance, support and the invaluable lessons I have learnt under

his wing over the years.

I would also like to thank my doctoral committee members, Prof. Vijayaku-

mar Bhagavatula, Prof. John M. Dolan and Dr. Saad Bedros for serving on my

committee and for their comments, guidance, and suggestions. I am very fortunate

to have such a distinguished thesis panel for which I am forever grateful.

I would like to also thank the wonderful lab mates I have had over the years

iv

all of whom have done great work and have taught me so many things over the

years. Shreyas Venugopalan, Utsav Prabhu, Sekhar Bhagavatula, Felix Xu, Keshav

Sheshadri, Raied Aljadany, Vishnu Boddeti, Khoa Luu, Thi Hoang Ngan (Nancy)

Le, Chenchen Zhu, Yutong Zheng, Ran Tao, Thanh Hai Phan, Uzair Ahmed and

Sreena Nallamothu have been an absolute pleasure to work with. I have deeply

enjoyed the conversations with Raied, Yutong, Felix, Uzair, Sreena, Utsav, Shreyas

and Sekhar which have spawned many ideas some of which were published.

I also thank the CyLab and CMU staff who have always helped us with any

problems and the innumerable last minute requests. Thank you Chelsea Mendenhall,

Tina Yankovich, Brittney Reyes and Nathan Snizaki for all your support. You all

made our life here much easier with such amazing support over the years.

One of the hardest things to do early on in a PhD, is picking a research

direction that you find most interesting. No other work has been more influential in

this regard than the work of Prof. Tomaso Poggio at MIT. It was a cold email back

in 2013 to which he graciously replied which started a long term commitment to the

principles of research which his work has embodied. He was very kind in allowing me

to attend the first CBMM Summer School back in 2014 which was an intense crash

course in systems, computational and cognitive neuroscience. My project for that

summer course on modelling random connections was the foundation upon which a

part of this thesis, PRCNs are based.

My time in Pittsburgh would have no way near as fun and full-filled had

it not been for the wonderful set of friends and support system that I was fortu-

nate to have. I want to thank the members of the ‘The Peace Band’, ‘The Club’,

‘Solway’ and ’Shady’. In particular, I want to thank Annesha Ganguly, Purvasha

Chakravarti, Abhishek Ravi, Aditya Menon, Vishal Pallikandi, Vaishnavi Kumar,

Sanika Kokate, Arnab Debnath, Vaishanavh Nagarajan, Saurabh Kadekodi, Sid-

dharth Singh, Ajay Pisat, Satwik Kottur, Deepanjana Gupta and Srujana Rao for

v

the wonderful memories.

I also want to include my sister Abhishikta Pal in this list who, as fate would

have it, graduated from CMU with a Masters in Urban Design. She has been just

an immense source of love and support for over the years. Seldom are people blessed

to have such talented and kind hearted siblings in life. One other person who has

been an absolute pillar in this journey is Annesha Ganguly. Her love, support,

banter, cheerfulness, vocal and culinary talents, along with devastating skill at one

particular board game has given life the color it deserves. I am eternally fortunate

to have them in my life.

Lastly, there are not many words to describe how privileged I am to have

Sudip and Preeti Pal as my parents. They are my original source of inspiration in

science. Every point in life was filled with their encouragement, love and support.

Their tireless efforts to have me educated, be a good citizen and contribute to the

world in anyway I can is the reason I am here today. This thesis is indeed dedicated

to them.

This work has been partly funded by US Naval Air Systems Command

(NAVAIR) grant no. N68335-16-C-0177, NAVMAR Applied Sciences Corporation

grant no. NASC-0040-CMU and National Institute of Justice grant no. 2013-IJ-

CX-K005.

Dipan K. Pal

Carnegie Mellon University

December 2020

vi

Abstract

The world is complex, ever changing yet structured. Given this complexity,

how can an organism living in such a world or even an artificial system distill this

information to perceive what is important towards its intention and what is not?

What theoretical principles underline such an ability? More interestingly, how do

these principles operate in the chaotic randomness and complexities of neural cir-

cuits in mammalian brains? These questions form the very heart of the study of

representation learning, and also point to perhaps the most interesting directions

the field must explore.

Indeed, one of the fundamental pursuits of machine learning and artificial

intelligence is learning to be invariant to nuisance transformations in the data. Most

prior work has focused on addressing these challenges through different aspects

of the deep learning pipeline such as loss functions, data augmentation and more

recently self-supervision techniques. However, the core architecture or structure

of these networks has yet to be adapted to these challenges. In this thesis, we

explore how to learn and encode invariance towards nuisance transformations by

redesigning the convolution architecture itself leading to more powerful and efficient

neural networks. We present two fundamental improvements to neural architecture

design through NPTNs (Non-Parametric Transformation Networks) and PRCNs

(Permanent Random Connectome Networks). These are designed to be drop-in

vii

replacements for the ubiquitous vanilla convolution layer.

NPTNs are a natural generalization of ConvNets and unlike almost all pre-

vious works in deep architectures, they make no assumption regarding the structure

of the invariances present in the data. PRCNs on the other hand, are initialized

with random connectomes (not just weights) which are a small subset of the con-

nections in a fully connected convolution layer. Importantly, these connections in

PRCNs once initialized remain permanent throughout training and testing. Perma-

nent random connectomes make these architectures loosely more biologically plausi-

ble than many other mainstream network architectures which require highly ordered

structures. They also offer insights towards computational models of random con-

nectomes in the visual cortex. Empirically, we find that these randomly initialized

permanent connections have positive effects on generalization and parameter effi-

ciency. These ideas open a new dimension in deep network design providing more

versatile and effective learning. More importantly, they offer initial answers to some

of the fundamental and motivating questions we highlighted above in representation

learning.

viii

Contents

Acknowledgments iv

Abstract vii

List of Figures xii

List of Tables xviii

Chapter 1 The Fundamental Problem 1

1.1 Convolutional Networks and Beyond. 1

1.2 Prior Art . 3

Chapter 2 The Transformation Network Paradigm 6

2.1 The Transformation Network . 6

2.2 Modeling Transformations as Unitary Groups. 8

2.3 Invariances in a TN node. 9

2.4 Relaxing towards Non-group and Non-Unitary Structure in a TN

node (Towards NPTNs). 10

Chapter 3 Non-Parametric Transformation Networks 12

3.1 Generalizing Convolution Architectures. 12

ix

3.2 The NPTN . 14

3.2.1 NPTN Layer Structure, Forward Pass and Training. 15

3.2.2 Invariance Modelling in NPTNs is Data Driven and Highly

Flexible. 17

3.3 Empirical Evaluation of NPTNs . 18

3.3.1 Benchmarking against ConvNets on CIFAR-10 18

3.3.2 Benchmarking against other approaches: ETH-80 19

3.3.3 Learning Unknown Transformation Invariances from Data . . 21

3.3.4 NPTNs with Capsule Networks 22

3.4 Discussion on NPTNs . 23

Chapter 4 Permanent Random Connectome Networks 25

4.1 Motivating Permanent Random Connectome Networks 25

4.1.1 The Problem of Invoking Invariances. 25

4.1.2 Relaxed Biological Motivation for Randomly Initialized Con-

nectomes. 28

4.2 Permanent Random Connectome NPTNs 29

4.2.1 Invoking Invariance through Max Pooling. 30

4.2.2 Connection to Deep Networks. 32

4.2.3 Invoking Invariance through Channel Pooling in Deep Networks. 34

4.2.4 Choosing the Support for Pooling at Random: Permanent

Random Connectomes. 34

4.2.5 The PRC-NPTN layer. 35

4.3 Empirical Evaluation and Discussion 38

4.3.1 Efficacy in Learning Arbitrary and Unknown Transformations

Invariances from Data. 40

x

4.3.2 Evaluation on the ETH-80 dataset 42

4.3.3 Efficacy on CIFAR-10 Image Classification. 45

4.3.4 Exploring parameter reduction due to PRC-NPTNs 48

4.3.5 Pruning PRC-NPTNs for extreme parameter reduction . . . 51

Chapter 5 The Next Chapter 56

Bibliography 57

xi

List of Figures

2.1 A single NPTN node: (a) Operation performed by a single Transfor-

mation Network (TN) node (single channel input and single channel

output, Non-Parametric Transformation Networks are a kind of TN).

TNs (and NPTNs) are a generalization of ConvNets towards learning

general invariances and symmetries. The node has two main com-

ponents (i) Dot product implemented as Convolution due to weight

sharing and (ii) Transformation Pooling. The dot-product between

the input patch (x) and a set of |G| number of filters gw (green) is

computed (this results in convolution when implemented with spa-

tially replicated nodes). Here |G| = 6 (different shades of green indi-

cate transformed templates). g indicates the transformation applied

to the template or filter w. The resultant six output scalars (red)

are then max-pooled over to produce the final output s (black). The

pooling operation here is not spatially (as in vanilla ConvNets) but

rather across the |G| channels which encode non-parametric transfor-

mations. The output s is now invariant to the transformation encoded

by the set of filters G. Each plane indicates a single feature map/filter. 7

xii

3.1 Types of Invariances in Deep Networks (b) Most previous works in

deep learning have focused on invariances to transformations that are

parametric in nature and fixed. SymNets ([1]) and NPTNs to the best

of our knowledge are the only architectures to learn invariances from

data towards transformations that are not modelled by any expression

in the network itself, i.e. the symmetries that are captured are non-

parametric in nature. 13

3.2 Comparison between (a) a standard Convolution layer and (b) a

NPTN layer with |G| = 3. Each layer depicted has 2 input (shades of

grey) and 2 output channels (shades of blue). The light grey rectan-

gle encloses a single TN node (see Fig. 2.1) The convolution layer has

therefore, 2×2 = 4 filters, whereas the NPTN layer has 2×2×3 = 12

filters. The different shades of filters in the NPTN layer denote trans-

formed versions of the same filter (same color) which are max pooled

over (support denoted by inverted curly bracket). The + opera-

tion denotes channel addition. In our experiments, we adjust the

input/output channels of the NPTN layer to have the same number

of parameters as the ConvNet baselines. (c) Shows how ConvNets

and NPTNs are categorized under the TN framework. 16

3.3 Test losses on CIFAR-10 for the two layered network. Each network

listed has the same number of filters. 18

xiii

3.4 Test errors on MNIST for Capsule Nets augmented with NPTNs.

(128) denotes a Capsule Network with a vanilla ConvNet. Other

labels are NPTNs with (channels, |G|). The number of filters from left

to right is {4224, 4160, 4074, 4128}. NPTNs significantly outperform

ConvNets in Capsule Nets with fewer filters. 22

4.1 Left: Operations comprising the PRC-NPTN layer. The number of

input and output channels in the Conv layer is (inch) and (inch∗|G|)

respectively. G is the number of filters (linear transformations learnt)

for each input channel. The key operation proposed is the Permanent

Random Channel shuffling operation with a fixed index mapping for

every forward pass. This indexing or connectome is initialized ran-

domly during network initialization. Center: Architecture of the

PRC-NPTN layer. Each input channel is convolved with a number of

filters (parameterized by G). Each of the resultant activation maps is

connected to a one of the channel max pooling units randomly (initial-

ized once, fixed during training and testing). Each channel pooling

unit pools over a fixed random support of a size parameterized by

CMP. Right: Explicit invariances enforced within deep networks in

prior art are mostly parametric in nature. The important problem of

learning non-parametric invariances from data has not received a lot

of attention. 26

xiv

4.2 (a) Homogeneous Structured Pooling pools across the entire

range of transformations of the same kind leading to feature vectors

invariant only to that particular transformations. Here, two distinct

feature vectors are invariant to transformation T1 and T2 indepen-

dently. (b) Heterogeneous Random Support Pooling pools

across randomly selected ranges of multiple transformations simulta-

neously. The pooling supports are defined during initialization and

remain fixed during training and testing. This results in a single

feature vector that is invariant to multiple transformations simulta-

neously. Here, each colored box defines the support of the pooling

and pools across features only inside the boxed region leading to one

single feature. 33

4.3 Vectorized Random Support Pooling extends this idea to con-

volutional networks, where one realizes that the random support pool-

ing on the feature grid (on the left) is equivalent to random support

pooling of the vectorized grid. Each element of the vector (on the

right) now represents a single channel in a convolutional network and

hence random support pooling in PRC-NPTNs occur across channels. 33

4.4 Only Rotation Transformation Results: Test error statistics

with mean and standard deviation on MNIST with progressively ex-

treme random rotations. ConvNet FC denotes the addition of a

2-layered pooling 1× 1 pooling network after every layer. Note that

for this experiment, CMP=|G|. Permanent Random Connectomes

help with achieving better generalization despite increased nuisance

transformations. 38

xv

4.5 Only Translation Transformation Results: Test error statis-

tics with mean and standard deviation on MNIST with progressively

extreme random pixel translations. ConvNet FC denotes the ad-

dition of a 2-layered pooling 1× 1 pooling network after every layer.

Note that for this experiment, CMP=|G|. Permanent Random Con-

nectomes help with achieving better generalization despite increased

nuisance transformations. 39

4.6 Computational efficiency improvements of our CUDA implementa-

tions. 40

4.7 Simultaneous Transformation Results: Test error statistics

with mean and standard deviation on MNIST with progressively ex-

treme transformations with random rotations and random pixel

shifts simultaneously. For PRC-NPTN and NPTN the brackets

indicate the number of channels in the layer 1 and G. Note that for

this experiment, CMP=|G|. 41

4.8 Sample images from the ETH-80 database. The dataset contains

80 objects belonging to 8 different classes. Each object has images

from different viewpoints on a hemisphere resulting in 3D pose and

viewpoint variation for each object. 43

4.9 PRC-NPTNs allow for significantly smaller networks with

similar performance. PRC-NPTNs provide a factor between 6.6×

to 9.2× worth of reduction in parameters while suffering a test

accuracy degradation only between 3.08% to 4.82%. Whereas, using

the same number of parameters, PRC-NPTN achieves 82.84% test

accuracy versus the baseline 80.67%. 48

xvi

4.10 PRC-NPTN version of ResNets allow for significantly smaller

networks with similar performance. PRC-NPTNs provide a fac-

tor between 1.93× to 6.1× worth of reduction in parameters

while suffering a test accuracy degradation only between 1% to 2.2%. 49

4.11 PRC-NPTNs allow for significantly more efficiently networks

with similar performance. Both for the four layered network and

ResNet, the PRC-NPTN versions provide significant improvements

in terms of FLOP reduction. 50

4.12 Varying CMP: PRC-NPTN pruning for different amounts.

Different models have varying CMP PRC-NPTN along with

pruning allows control over focus on performance at lower or higher

parameter regimes. Each curve is a separate model trained for a

different value of CMP. The yellow PRC-NPTN curve shows better

performance at high parameter regime for low CMP. On the other

hand, the dark blue PRC-NPTN curve shows better performance at

low parameter regime using high CMP. 53

4.13 Varying G: PRC-NPTN pruning for different amounts. Dif-

ferent models have varying G PRC-NPTN along with pruning

allows control over focus on performance at lower or higher param-

eter regimes. Each curve is a separate model trained for a different

value of G. The yellow PRC-NPTN curve shows better performance

at low parameter regime for low G. On the other hand, the dark

blue PRC-NPTN curve shows better performance at high parameter

regime using high G. 54

xvii

List of Tables

3.1 Test accuracy on ETH-80. All models including NPTNs and the

ConvNet had roughly the same number of parameters (about 1.4M).

Results for models along with architecture details other than NPTN

are cited as is from the same study as ConvNet. 20

3.2 Test error on progressively transformed MNIST with (a) random ro-

tations and (b) random pixel shifts. NPTNs can learn invariances to

arbitrary transformations from the data itself without any a priori

knowledge. All models have same number of parameters. 21

xviii

4.1 Architectures tested on ETH-80. C - convolution layer, FC -

fully connected layer, PRC - PRC-NPTN layer, NPTN - NPTN layer,

GAP - global average pooling layer. Every Conv, NPTN and PRC-

NPTN layer was followed by a spatial pooling layer of kernel size 2

except the last layer before the GAP. The 1 × 1 versions of these

architectures have a 1× conv layer after every 3 × 3 layer except

the first C(12) layer. ConvNet B was designed to be similar to the

architecture explored in Khasanovaet.al., 2017 however with more

layers. ConvNet C was designed to be more aligned with modern

architecture choices such as global average pooling followed by just

one FC layer. 44

4.2 Test accuracy on ETH-80 Protocol 1. ∗ indicates the result

was obtained from the corresponding paper (Khasanova et.al., 2017

and Pal and Savvides, 2019), and is not on the split used for our

experiments. For NPTN is number in the bracket denotes |G|, for

PRC-NPTN the numbers denote |G| and CMP respectively. 45

4.3 Efficacy on CIFAR-10: Test error statistics on CIFAR-10 with

mean and standard deviation. ++ indicates AutoAugment testing.

Each DenseNet and its corresponding PRC-NPTN variant has the

same number of parameters (number in bracket determines CMP).

|G| = 12 for PRC-NPTN and growth rate was kept at 12 for DenseNet-

Conv. (w/o Random) indicates no randomization in the connectomes

constructed (as an ablation study). The speed and memory improve-

ments are multiplicative improvement factors of our CUDA kernel

implementation compared to baseline optimized PyTorch code. . . . 47

xix

4.4 PRC-NPTNs allow for significantly smaller networks with

similar performance. PRC-NPTN versions of VGG 19 and DenseNet

allow for about a 27% decrease in the number of parameters while

suffering only a marginal decrease in accuracy in the case of VGG 19. 51

xx

Chapter 1

The Fundamental Problem

One of the central problems of machine learning, has been supervised classification.

A core challenge towards these problems is the encoding or learning of invariances

and symmetries that exist in the training data. Indeed, methods which incorporate

some known invariances or promote learning of more powerful invariances for a

learning problem perform better in the target task given a certain amount of data.

A number of ways exist to achieve this. One can present transformed versions of the

training data as in [2], minimize auxiliary objectives promoting invariance during

training as in [3] or pool over transformed versions of the representation itself as in

[4, 5, 6].

1.1 Convolutional Networks and Beyond.

Towards this goal, ideas proposed in [7] with the introduction of convolutional neural

networks have proved to be very useful. Weight sharing implemented as convolutions

followed by pooling resulted in the hard encoding of translation invariances (and

symmetries) in the network. This made it one of the first applications of modelling

1

invariance through a network’s architecture itself. Such a mechanism resulted in

greater regularization in the form of a structural or inductive bias in the network.

With this motivation in mind, it is almost natural to ask whether networks which

model more complicated invariances and symmetries perform better? Investigating

architectures which invoke invariances not implicitly through the model’s functional

map but explicitly through an architectural property seems important.

New Dimensions in Network Architecture. Over the years, deep

convolutional networks (ConvNets) have enjoyed a wide array of improvements in

architecture. It was observed early on that a larger number of filters (width) in Con-

vNets led to improved performance, though with diminishing returns. [8, 9] present

another significant milestone with the development and maturity of residual connec-

tions and dense skip connections. Though there have been more advances in network

architecture, many of the improvements have been derivatives of these two ideas (for

instance [10, 11, 12]). Recently however, [13] introduced Capsule Nets which pre-

sented another potentially fundamental idea of encoding properties of an entity or

an object in an activity vector rather than a scalar. With the goal of designing more

powerful networks, ideas presented in this thesis for modelling general invariances

in the same framework as ConvNets, open up a new and potentially key dimension

for architecture development. In this thesis, we explore one such architecture class,

called Transformation Networks (TN) which is a generalization of ConvNets. Addi-

tionally, we introduce a new type of TN using which a new class of networks can be

built called Non-Parametric Transformation Networks (NPTNs). Finally, we build

upon NPTNs to introduce PRCNs or Permanent Random Connectome Networks.

2

1.2 Prior Art

Although past applications of incorporating invariances were more specific and rel-

atively narrow, development of such methods offers a better understanding of the

importance of the problem. Though in this work we focus on deep architectures, it

is important to note a number of works on modifications of Markov Random Fields

and Restricted Boltzman Machines to achieve rotational invariance [14, 15].

Incorporating known invariances using deep networks. Convolu-

tional architectures have seen many efforts to produce rotation invariant represen-

tations. [16] and [17] rotate the input itself before feeding it into stacks of CNNs

and generating rotation invariant representations through gradual pooling or pa-

rameter sharing. [18, 19, 20] rotate the convolution filters (a cheaper albeit still

expensive operation) instead of transforming the input followed by pooling. A simi-

lar approach was explored for scale by [21]. An interesting direction of research was

explored by [22] where the rotation, scale and translation invariant filters were fixed

and non-trainable. [23, 24] presented methods to incorporate parametric invariances

using groups and warped convolutions. The transformations in [24, 25] are known

apriori and the sample grids and steerable filters are generated offline. This limits

the capability to learn arbitrary and adaptive transformations. NPTNs need no

such apriori knowledge apart that encoded in its architecture, can learn arbitrary

non-parametric transformations and finally are simpler and perhaps more elegant

in implementation.

Learning unknown invariances from data. In most real world prob-

lems, nuisance transformations present in data are unknown or too complicated to

be parameterized by some function. [26] proposed a theory of group invariances

called I-theory and explored its connection to general classification problems and

3

deep networks. Based off the core idea of measuring moments of a group invariant

distribution, multiple works had demonstrated efficacy of the ideas in more chal-

lenging real-world problems such as face recognition, though not in a neural network

setting. See [4, 5, 6].

Learning unknown invariances from data through networks. Very

few works have explored incorporating unknown invariances into deep networks. To

the best of our knowledge, SymNets introduced in [1] was only one other previous

study proposed deep networks which learn more general transformations. They were

introduced as one of the first to model general invariances with back propagation.

They utilize kernel based interpolation to tie weights enable them to model general

symmetries. Nonetheless, the approach is complicated and difficult to scale. [27]

provide sufficient conditions to enforce the learned representation to have symme-

tries learned from data. [28] modelled local invariances using pooling over sparse

coefficients of a dictionary of basis functions.

[29] achieved local invariance through complex weight sharing. Optimization

was carried out through Topographic ICA and only carried out layer wise for deep

networks. A separate approach towards modelling invariances was also developed

where a normalizing transformation is applied to every input independently. This

approach was applied to transforming auto encoders [30].

Prior Art Learning Invariances from Data or using Random Con-

nectomes. There have been many seminal works that have indeed explored the role

of temporary random connections in deep networks such as DropOut [31], DropCon-

nect [32] and Stochastic Pooling [33]. However, unlike the proposed approach, the

connections in these networks randomly change at every forward pass, hence are

temporary. More recently, random permanent connections were explored for large

4

scale architectures [34]. It is important however to note that the basic unit of compu-

tation, the convolutional layer, remained unchanged. Our study explores permanent

random connectomes within the convolutional layer itself, and explores how it can

learn non-parametric invariances to multiple transformations simultaneously in a

simple manner.

5

Chapter 2

The Transformation Network

Paradigm

2.1 The Transformation Network

A Transformation Network (TN) is a feed forward network with its architecture

designed to enforce invariance to some class of transformations through pooling. At

the core of the framework is the TN node. A TN network consists of multiple such

nodes stacked in layers. A single TN node is analogous to a single convolution layer

with single channel input and single channel output.

Each TN node (single input channel and single output channel) internally

consists of two operations 1) (convolution) the convolution operation with a bank of

filters and 2) (transformation pooling) a max pooling operation across the set of the

resultant convolution feature maps from the single input channel. Note the pooling

is not spatial but rather across channels originating from the same input channel

(this is different from MaxOut [35] which pools over all input channels). Fig. 2.1

6

Figure 2.1: A single NPTN node: (a) Operation performed by a single Transfor-
mation Network (TN) node (single channel input and single channel output, Non-
Parametric Transformation Networks are a kind of TN). TNs (and NPTNs) are a
generalization of ConvNets towards learning general invariances and symmetries.
The node has two main components (i) Dot product implemented as Convolution
due to weight sharing and (ii) Transformation Pooling. The dot-product between
the input patch (x) and a set of |G| number of filters gw (green) is computed (this
results in convolution when implemented with spatially replicated nodes). Here
|G| = 6 (different shades of green indicate transformed templates). g indicates the
transformation applied to the template or filter w. The resultant six output scalars
(red) are then max-pooled over to produce the final output s (black). The pooling
operation here is not spatially (as in vanilla ConvNets) but rather across the |G|
channels which encode non-parametric transformations. The output s is now invari-
ant to the transformation encoded by the set of filters G. Each plane indicates a
single feature map/filter.

illustrates the operation of single TN node with a single input/output channel for

a single patch. The single channel illustrated in the figure takes in a single input

feature map and convolves it with a bank of |G| filters. Here |G| is the cardinality

(or size) of the set of transformations that the TN node is invariant towards, with

G being the actual set itself. Next, the transformation max pooling operation max

pools across the |G| feature values to obtain a single TN activation value. When this

node is replicated spatially, standard convolution layers can be utilized. Formally,

a TN node denoted by Υ acting on a 2D image patch vectorized as x ∈ Rd can be

defined as follows.

7

Υ(x) = max
g∈G

(〈x, gw〉) (2.1)

Here, 〈 〉 denotes a dot product and G is formally defined as a unitary group,

i.e. a finite set obeying group axioms with each element being unitary. w ∈ Rd is

the weight or filter, and gw is the group element g acting on w1. Therefore, the

convolution kernel weights of a TN node are simply the transformed versions of w as

transformed by the unitary group G. The TN node has to, only in theory, transform

weight template w according to G to generate the rest of the filters to be pooled

over during the transformation pooling stage. In practice however, these are simply

stored as a set of templates or filters which only implicitly encode G through some

constraints. For instance, vanilla ConvNets model the group G to be the translation

group by enforcing it through the convolution operation. Thus, a ConvNet can be

exactly modelled by the TN framework when G is the translation group. Gradient

descent updates the filter w for a single node which immediately specifies the other

filters in that node since they are the translated versions of w.

2.2 Modeling Transformations as Unitary Groups.

The use of unitary groups to model transformations and invariances has emerged

as a prominent theoretical tool [26, 6]. Group structure allows the computing of

invariant objects such as group integrals. However, the significance of the unitary

group lies in the fact that the vanilla ConvNet is invariant to translations, which

is the simplest unitary group. Any framework that models invariance using the

1We use this shorter notation to reduce clutter.

8

unitary group can be directly generalized to more complex groups such as rotations

(rotation is an unitary transformation). This allows for seamless integration of the

vanilla ConvNet into the theoretical framework and provides clear theoretical and

practical connections to the same. Unitary groups in TNs allow them to exactly

model ConvNets while generalizing to more complex networks invoking more com-

plex invariances. The unitary group condition thus is only a useful theoretical tool,

however should not be considered as a practical constraint.

2.3 Invariances in a TN node.

Invariance in the TN node arises directly due to the symmetry of the unitary group

structure of the filters. The max operation simply measures the infinite moment of

an invariant distribution which invokes invariance (see [26]). We demonstrate this

in the form of the following simple result2.

Lemma 2.3.1. (Invariance Property) Given vectors x,w ∈ Rd, a unitary group G

and Υ(x) = maxg∈G(〈x, gw〉), for any fixed g′ ∈ G, then Υ(x) = Υ(g′x).

Proof. Consider the distribution of elements of the set Sg′ = {〈g′x, gw〉} over all

g ∈ G and for any particular g′ ∈ G. This 1-D distribution characterizes the vector

g′x through the projections onto gw. Due to unitarity of G, and that g′ ∈ G, we have

〈g′x, gw〉 = 〈x, g′−1gw〉. Now, since G is a group, we have for any g′ ∈ G, g′−1g ∈ G

due to the closure property. The set of elements in Sg′ contains all elements of G and

hence must also contain g′−1g. This implies that the action of g′−1 on the group G

results in just a reordering of the group, leaving the distribution unchanged. Thus,

the set Sg′ is unchanged. More specifically, Sg′ = {〈g′x, gw〉} = {〈x, gw〉} = Se,

where e is the identity element of G. Thus, the two sets invoke the exact same

2Proof in the supplementary.

9

distribution, which results in their moments being the same. This includes the

infinite moment, which implies Υ(g′x) = maxg∈G Sg′ = maxg∈G Se = Υ(x).

Lemma 2.3.1 shows that for any input x (including test inputs), the node

output is invariant to the transformation group G. Note that invariance to test

samples arises from two components. First, the group structure of G provides exact

invariance and second, the unitary condition allows for the invariance properties to

be extended to unseen test samples. This is interesting, since one does not need to

observe any transformed version of say a test sample x during training which reduces

sample complexity as explored by [26]. Invariance is invoked for any arbitrary input

x during test time, thereby demonstrating good generalization properties.

2.4 Relaxing towards Non-group and Non-Unitary Struc-

ture in a TN node (Towards NPTNs).

Lemma 2.3.1 guarantees exact invariance perfectly for vanilla ConvNets and TNs

which model G as having a group-structure and the unitary condition. For methods

that do not enforce these conditions (unitary group conditions) in theory, no test

generalization claim can be made. However, a number of studies have observed

approximate albeit sufficient invariances in practice under this setting [26, 27, 5, 6, 4].

The main motive for modelling transformations as unitary groups was to provide

a theoretical connection to ConvNets and other methods that enforce other kinds

of unitary invariance such as rotation invariance [20, 19]. However, real-world data

experiences a large array of transformations acting, which certainly lie outside the

span of unitary transformations. Keeping this in mind, constraining the network to

model only unitary transformations limits their ability to learn these more general

10

invariances which are difficult to characterize.

In the following chapter, we introduce a new kind of TN called the NPTN

which is free from the constraints and limitations of unitary modelling, thereby

being more expressive. Indeed, in our experiments, we observe that the NPTN ar-

chitectures are able to perform better by learning invariance (signified by better test

generalization) towards both 1) group structured, unitary and parametric transfor-

mations such as translations and rotations, and also towards 2) general non-group

structured and non-parametric transformations (as in general object classification)

which are difficult to characterize. Note that Lemma 2.3.1 only serve as a result for

ConvNets and TNs, they do not characterize the invariance properties on NPTNs

and general non-group non-unitary transformation. Investigation of such proper-

ties of NPTNs under the general setting is arduous and is outside the scope of this

thesis. Further, note that developing TNs and relating the unitary condition is not

necessary for the development or motivation of NPTNs. TNs however provide a

more elegant story and more importantly clarify the connection to vanilla ConvNets

and helps to put our contribution in perspective.

11

Chapter 3

Non-Parametric Transformation

Networks

3.1 Generalizing Convolution Architectures.

In this chapter, we explore one architecture class, called Transformation Networks

(TN) which is a generalization of ConvNets. Additionally, we introduce a new type

of TN using which a new class of networks can be built called Non-Parametric Trans-

formation Networks (NPTNs). NPTNs networks have the ability to learn invariances

to general transformations that are observed in the data which are non-parametric in

nature (difficult to express mathematically). They can be easily implemented using

standard off-the-shelf deep learning frameworks and libraries. Further, they can be

optimized using vanilla gradient descent methods such as SGD. Unlike other meth-

ods that enforce additional invariances in convolutional architectures [18, 19, 20],

NPTNs do not need to transform the input, activation maps or the filters at any

stage of the learning/testing process. They enjoy benefits of a standard convolu-

12

Invariance in Deep
Networks

Parametric InvarianceNon-Parametric Invariance

ConvNets [23] G-CNN [6]
FRPC [39] ScatNet [35]

DREN [25] Warped CNN [14]
SiCNN [40] Go network [5]

SymNets [10]
NPTN

Steerable CNN [7] Galaxy Net [8]

Figure 3.1: Types of Invariances in Deep Networks (b) Most previous works in
deep learning have focused on invariances to transformations that are parametric in
nature and fixed. SymNets ([1]) and NPTNs to the best of our knowledge are the
only architectures to learn invariances from data towards transformations that are
not modelled by any expression in the network itself, i.e. the symmetries that are
captured are non-parametric in nature.

tional architecture such as speed and memory efficiency while being more powerful

in modelling invariances and being elegant in their operation. When forced to ignore

any learnable transformation invariances in data, they gracefully reduce to vanilla

ConvNets in theory and practice. However, when allowed to do so, they outperform

ConvNets by capturing more general invariances.

Some properties of NPTNs The architecture itself of an NPTN allows it

to be able to learn powerful invariances from data provided the transformations are

observable in data (a single node is illustrated in Fig. 2.1). NPTNs do not enforce

any invariance that is not observed in the data (although translation invariance

can still be enforced through spatial pooling). Learning invariances from data is

different and more powerful than enforcing known and specific invariances as is more

common in literature (see Fig. 3.1). Networks which enforce predefined symmetries

(including vanilla ConvNets) force the same invariances at all layers which is a

strong prior. More complex invariances are left for the network to learn using

the implicit functional map as opposed to the explicit architecture. The proposed

13

NPTNs have the ability to learn different and independent invariances for different

layers and in fact for different channel paths themselves. Vanilla ConvNets enforce

translation invariance through the convolution operation followed by a aggregation

operation (either pooling or a second convolution layer) and only need to learn the

filter instantiation. However, an NPTN node needs to learn 1) the instantiation of

the filter and 2) the transformation that the particular node is invariant towards

encoded as a set of filters. Each node learns these entities independently of each

other which allows for a more flexible invariance model as opposed to architectures

which replicate invariances across the network.

3.2 The NPTN

A Non-Parametric Transformation Network (NPTN) is a kind of TN that lacks any

constraints on set of weights/filters w for any particular node. Here the set of filters

G has two relaxations 1) need not have any group structure and 2) need not model

any parametric and/or unitary transformations such as the translations or rotations.

The term G in an NPTN represents simply a set of arbitrary filters modelling

arbitrary transformations which are (potentially) non-parametric. One might think

of the analogy from statistics where the Gaussian distribution is parametric, however

for many real-world distributions a non-parametric tool such as a histogram is more

appropriate. Note that however, there is no constraint that prevents a NPTN from

learning translation and rotation invariance. In fact, in one of our experiments this is

exactly the requirement. Under the two relaxations, the invariance invoked to these

arbitrary transformations in an NPTN would only be approximate. Nonetheless

and consistent with previous work, we find in our experiments that despite the

approximation, there is much to be gained overall and the invariance invoked suffices

14

in practice as also found by [4, 5].

In an NPTN, both the entities (w,G) are learned, i.e. a NPTN node is tasked

with learning both the filter instantiation w, and the set of transformations G to

which the node is to be invariant towards. Nonetheless and rather importantly, no

generation of transformed filters is necessary during any forward pass of a NPTN

layer since the set G of transformed filters is always maintained and updated by

gradient descent. This significantly reduces computational complexity compared to

some previous works [18, 19]. Learning G from data is in sharp contrast with the

vanilla convolutional node in which only the filter instantiation w is learned and

where G is hard coded to be the translation group which is a parametric transfor-

mation (and also arguably the most elementary). Thus, ConvNets are a kind of

Parametric Transformation Networks (PTNs) (see Fig. 3.2(c)). It is also important

to note that however, setting |G| = 1 and incorporating spatial pooling, a NPTN is

reduced to a vanilla ConvNet in practice. Compared to other approaches to learn

and model general invariances such as SymNets [1], the NPTN architecture is ele-

gantly simple and also a close generalization of ConvNets. Further, they can replace

any convolution layer in any architecture making them versatile. We now describe

the NPTN layer in more detail and discuss its characteristics.

3.2.1 NPTN Layer Structure, Forward Pass and Training.

Fig. 3.2 illustrates a NPTN layer and compares it to a vanilla ConvNet layer. The

NPTN layer shown has 2 input channels, 2 output channels and |G| = 3. For a

NPTN layer with M input channels and N output channels, there would be MN

NPTN nodes each identical to the one shown in Fig. 2.1. There are |G| filters

learned for each of the MN nodes, which each are convolved over the image similar

15

(a) Convolution layer (b) NPTN layer

Transformation Network (TN)

Non-Parametric and
 non-group structured G

Parametric and
group structured G

ConvNet NPTN

(c) Relation between ConvNets and
NPTNs

Figure 3.2: Comparison between (a) a standard Convolution layer and (b) a NPTN
layer with |G| = 3. Each layer depicted has 2 input (shades of grey) and 2 output
channels (shades of blue). The light grey rectangle encloses a single TN node (see
Fig. 2.1) The convolution layer has therefore, 2 × 2 = 4 filters, whereas the NPTN
layer has 2 × 2 × 3 = 12 filters. The different shades of filters in the NPTN layer
denote transformed versions of the same filter (same color) which are max pooled
over (support denoted by inverted curly bracket). The + operation denotes channel
addition. In our experiments, we adjust the input/output channels of the NPTN
layer to have the same number of parameters as the ConvNet baselines. (c) Shows
how ConvNets and NPTNs are categorized under the TN framework.

to a vanilla ConvNet. Consider Fig. 3.2(b), once the input is convolved with the

M × |G| filters, the M sets each with |G| feature maps each are max pooled across

the |G| feature maps. More specifically, each of |G| feature maps from a single input

channel results in one intermediate feature map after max pooling (across the |G|

channels). This is the primary step that invokes invariances to transformations.

After this operation there are MN intermediate feature maps which are transfor-

mation invariant. Now, the sum (alternatively the mean) of these M feature maps

results in one output feature map or channel. This is repeated for each of the N

output channels1. Note that there is no operation in this forward pass where the

input or the filters need to be transformed on-the-fly, which makes it NPTNs com-

putationally efficient compared to some previous models [16, 17, 18, 19, 20]. In fact,

the computation complexity for NPTNs only increases with the order |G| relative

1We provide implementation details of NPTNs using standard libraries in the supplementary.

16

to a vanilla convolution layer. This is countered in our experiments by decreasing

M and N , primarily to preserve the number of parameters. The NPTN layer can

be trained using standard back-propagation. Back-propagation updates each of the

|G| filters of the NPTN independently depending on which of the |G| filters is the

‘winner’ during the channel max pooling operation. Note again that this operation

is very different from MaxOut which pools over inputs from all channels, whereas

here each max operation pools over |G| channels only from the same input channel2.

Since the filters are not constrained to form any group, we do not expect to see any

regular transformations being observed in the filters (for instance, rotated filters

for rotation invariance). This might seem as a slight hindrance to interpretibility,

nonetheless in our experiments, we find NPTNs perform well in specific applications

where learning invariance from the data is necessary.

3.2.2 Invariance Modelling in NPTNs is Data Driven and Highly

Flexible.

It is important to note that though the architecture of NPTNs allows it to learn

invariances, it does not in fact enforce any particular invariance by itself. NPTNs can

only learn invariances to transformations that are observed in data, and thereby are

even more benefited from data augmentation and natural variation. This is a critical

difference between NPTNs and other works which do enforce specific invariances

through design (see under Parametric Invariance in Fig. 3.1). Another important

and powerful property that emerges from having independent filter sets for each

of the NPTN nodes in an entire network, is that each individual node can model

invariance to a completely different transformation. Concretely, a single NPTN layer

with M input channels and N output channels potentially can model MN different

2We discuss deviation from MaxOut in more detail in the supplementary.

17

(48, 1) (24, 2) (16, 3) (12, 4) (9, 5)

(Channel, |G|)

0.6

0.62

0.64
T

e
s
t
lo

s
s

ConvNet

NPTN

Figure 3.3: Test losses on CIFAR-10 for the two layered network. Each network
listed has the same number of filters.

kinds of invariances. This is again in sharp contrast to ConvNets and other previous

works such as [18, 19, 20] where each layer and in fact each of the channel paths

model exact same invariance, either translation, rotation or scale. NPTNs thus

offers immense flexibility in invariance modelling.

3.3 Empirical Evaluation of NPTNs

3.3.1 Benchmarking against ConvNets on CIFAR-10

In our first set of experiments, we benchmark and characterize the behavior of

NPTNs against the standard ConvNets augmented with Batch Normalization [36].

The goal of this set of experiments is to observe whether learning non-parametric

transformation invariance from complex visual data itself helps with object classi-

18

fication. For this experiment, we utilize the CIFAR-10 dataset3. The networks we

experiment with are not designed to compete with state-of-the-arts on this data

but rather throw light into the behavior of NPTNs. We therefore utilize a small

network, specifically a two layered network, for these experiments. Each layer block

of the baseline ConvNets consist of the convolution layer, followed by batch normal-

ization and the non-linearity (PReLU) and finally by a 2 by 2 spatial max pooling

layer. Each corresponding NPTN network replaces only the convolution layer with

the NPTN layer. Thus, NPTN is allowed to model non-parametric invariance in

addition to the typically enforced translation invariance due to spatial max pooling.

The two layered network baseline ConvNet has channels [3, 48, 16] with a total of

3 × 48 + 48 × 16 = 912 filters. The NPTN variants in this experiment keep the

total number of filters constant with 48 channels with |G| = 1 denoted by (48 1), 24

channels with |G| = 2 denoted by (24 2), and so on up until 9 channels with |G| = 5

(9 5). Fig. 3.3 shows the testing losses. Each network experimented with has the

same number of parameters. We find all NPTN variants which learn a non-trivial

set of transformations (|G| > 1) outperform the ConvNet baseline significantly, with

NPTN |G| = 3 performing the best.

3.3.2 Benchmarking against other approaches: ETH-80

We now benchmark NPTNs against other approaches learning invariances on the

ETH-80 dataset [37]. As our baseline, we follow the experimental setup and the

specifications of the models described in [38]. Note that for this experiment, our

goal is not to attain state-of-the-art results, but rather benchmark against other

related methods under a comparable setting. The dataset has 80 objects belonging

3With standard data augmentation of random cropping after a 4 pixel pad, and random hori-
zontal flipping. Training was for 300 epochs with the learning rate being 0.1 and decreased at epoch
150, and 225 by a factor of 10.

19

Method Accuracy (%)

ConvNet 80.1
STN 45.1
DeepScat 87.3
HarmNet 94.0
TIGradNet 95.1

NPTN (Ours) 96.2

Table 3.1: Test accuracy on ETH-80. All models including NPTNs and the ConvNet
had roughly the same number of parameters (about 1.4M). Results for models along
with architecture details other than NPTN are cited as is from the same study as
ConvNet.

to 8 classes. Each object has 41 images taken from a grid of different viewpoints

on a hemisphere. Following [38], we resize the images to 50× 50 and train on 2,300

images and test on the rest. The isometric transformations in the dataset present a

good challenge for approaches to invoke invariance in a real-world setting. For this

experiment, we compare against standard ConvNets, Spatial Transformer Networks

[39], DeepScat [40], HarmNet [41] and TIGradNet [38]. The NPTN architecture was

chosen to by replacing the convolution layers in the ConvNet architecture in [38]

with NPTN layers while setting |G| = 3 and reducing the number of channels to pre-

serve the number of parameters. All models in this experiment (including NPTNs)

have about 1.4M parameters. We utilized the model architectures and results from

ConvNet [38], STN [39], DeepScat [40], HarmNet [41], TIGradNet [38]. Table 3.1

presents the test accuracy on ETH-80. We find that NPTN outperforms these other

high-performing algorithms on this task with an accuracy of 96.2 %. Thus, NPTNs

despite having much simpler architecture and the same number of parameters, is

able to perform well in a task where the primary nuisance transformation is due to

varying 3D pose of the objects.

20

Rotations 0◦ 30◦ 60◦ 90◦

ConvNet (36) 0.75 1.16 2.05 3.32

NPTN (36, 1) 0.68 1.27 2.01 3.36
NPTN (18, 2) 0.66 1.09) 1.72 2.88
NPTN (12, 3) 0.63 1.08 1.71 2.76
NPTN (9, 4) 0.66 1.17 1.83 2.94

Translations 0 pix 4 pix 8 pix 12 pix

ConvNet (36) 0.62 0.95 1.97 7.00

NPTN (36, 1) 0.62 0.88 1.84 7.22
NPTN (18, 2) 0.74 0.75 1.70 6.26
NPTN (12, 3) 0.66 0.70 1.58 6.20
NPTN (9, 4) 0.64 0.76 1.59 6.37

Table 3.2: Test error on progressively transformed MNIST with (a) random rotations
and (b) random pixel shifts. NPTNs can learn invariances to arbitrary transforma-
tions from the data itself without any a priori knowledge. All models have same
number of parameters.

3.3.3 Learning Unknown Transformation Invariances from Data

We now demonstrate the ability of NPTN networks to learn invariances directly

from data without any apriori knowledge. For this experiment, we augment MNIST

with extreme a) random rotations b) random translations, both in training and test-

ing data thereby increasing the complexity of the learning problem itself. For each

sample, a random instantiation of the transformation was applied. For rotation, the

angular range was increased, whereas for translations it was the pixel shift range.

Table 3.2 presents these results. All networks in the table are two layered and have

the exact same number of parameters. As expected, NPTNs match the perfor-

mance of vanilla ConvNets when there were no additional transformations added

(0◦ and 0 pixels)4. However, as the transformation intensity (range) is increased,

NPTNs perform significantly better than ConvNets. Trends consistent with previ-

ous experiments were observed with the highest performance observed with NPTN

4NPTNs perform slightly better than ConvNets for 0◦ rotations because for all rotation experi-
ments, small translations up to 2 pixels were applied only in training.

21

(128) (64, 2) (42, 3) (32, 4)

(Channel, |G|)

1

1.5

2
T

e
s
t

E
rr

o
r

%

Figure 3.4: Test errors on MNIST for Capsule Nets augmented with NPTNs. (128)
denotes a Capsule Network with a vanilla ConvNet. Other labels are NPTNs with
(channels, |G|). The number of filters from left to right is {4224, 4160, 4074, 4128}.
NPTNs significantly outperform ConvNets in Capsule Nets with fewer filters.

(|G| = 3). This highlights the main feature of NPTNs, i.e. their ability to model ar-

bitrary transformations observed in data without any apriori information and with-

out changes in architecture whatsoever. They exhibit better performance in settings

where both rotation invariance and stronger translation invariance is required (even

though ConvNets are designed specifically to handle translations). This ability is

something that previous deep architectures did not possess nor demonstrate.

3.3.4 NPTNs with Capsule Networks

Capsule Networks with dynamic routing were recently introduced as an extension

of standard neural networks [13]. Since the original architecture is implemented

using vanilla convolution layers, invariance properties of the networks are limited.

Our goal for this experiment is to replace Convolution Capsule Nets with NPTN

Capsules. We replace the convolution layers in the Primary Capsule layer of the

22

published architecture with NPTN layers while maintaining the same number of

parameters (by reducing number of channels and increasing |G|). Our baseline

is the proposed CapsuleNet with 3 layers using a third party implementation in

PyTorch5. The baseline convolution capsule layer had 128 output channels. The

NPTN variants progressively decreased the number of channels as |G| was increased.

All other hyperparameters were preserved. The networks were trained on the 2-pixel

shifted MNIST for 50 epochs with a learning rate of 10−3. The performance statistics

of 5 runs are reported in Fig. 3.4. We find that for roughly the same number of

kernel filters (and parameters), Capsule Nets have much to gain from the use of

NPTN layers (a significant test error decrease from 1.90 to 0.78 for 1
3 of the baseline

number of channels and |G| = 3). The learning of invariances within each capsule

significantly increases efficacy and performance of the overall architecture.

3.4 Discussion on NPTNs

It is clear that the success of ConvNets is not the whole story towards solving per-

ception. Studies into different aspects of network design will prove to be paramount

in addressing the complex problem of not just visual but general perception.

The development of NPTNs offer one such design aspect, i.e. learning non-

parametric invariances and symmetries directly from data. Through our experi-

ments, we found that NPTNs can indeed effectively learn general invariances with-

out any apriori information. Further, they are effective and improve upon vanilla

ConvNets even when applied to general vision data as presented in CIFAR-10 and

ETH-80 with complex unknown symmetries. This seems to be a critical requirement

for any system that is aimed at taking a step towards general perception. Assuming

5https://github.com/dragen1860/CapsNet-Pytorch.git

23

detailed knowledge of symmetries in real-world data (not just visual) is impractical

and successful models would need to adapt accordingly.

In all of our experiments, NPTNs were compared to vanilla ConvNet base-

lines with the same number of filters (and thereby more channels). Interestingly,

the superior performance of NPTNs despite having fewer channels indicates that

better modelling of invariances is a useful goal to pursue during design. Explicit

and efficient modelling of invariances has the potential to improve many existing ar-

chitectures. Indeed, we outperform several state-of-the-art algorithms on ETH-80.

In our experiments, we also find that Capsule Networks which utilized NPTNs in-

stead of vanilla ConvNets performed much better. This motivates and justifies more

attention towards architectures and other solutions that efficiently model general in-

variances in deep networks. Such an endeavour might not only produce networks

performing better in practice, it also promises to deepen our understanding of deep

networks and perception in general.

24

Chapter 4

Permanent Random

Connectome Networks

4.1 Motivating Permanent Random Connectome Net-

works

4.1.1 The Problem of Invoking Invariances.

Learning invariances to nuisance transformations in data has emerged to be a core

problem in machine learning [26, 3, 1, 39, 23]. Moving towards real-world data of

different modalities, it is a daunting task to theoretically model all nuisance trans-

formations. Towards this goal, methods which learn non-parametric invariances

from the data itself without any change in architecture will be critical. However,

before delving into methods which learn such invariances however, it is important

to study methods which incorporate known invariances in data. An early method

to incorporate the translation prior was the Convolutional Neural Network (Con-

vNet) [7]. Over the years, there have been efforts in investigating what other trans-

25

Channel Max
Pooling

G

Intermediate
Activation Bank

Input Activation

Output Activation

PRC-NPTN layer

In
va

ria
nc

e
in

 D
ee

p
N

et
w

or
ks

Parametric Invariances
ConvNets, G-CNN, FRPC,
ScatNet, DREN, Warped

CNN, SiCNN, Steerable CNN

Non- Parametric
Invariances

Deep SymNets, NPTN
PRC-NPTN

Conv 3x3 (in, in*|G|)
groups=|G|

Permanent Rand Channel
Shuffling

(fixed indices)

Channel Max Pooling

Channel Average Pooling
(out)

Figure 4.1: Left: Operations comprising the PRC-NPTN layer. The number of
input and output channels in the Conv layer is (inch) and (inch∗|G|) respectively.
G is the number of filters (linear transformations learnt) for each input channel.
The key operation proposed is the Permanent Random Channel shuffling operation
with a fixed index mapping for every forward pass. This indexing or connectome
is initialized randomly during network initialization. Center: Architecture of
the PRC-NPTN layer. Each input channel is convolved with a number of filters
(parameterized by G). Each of the resultant activation maps is connected to a one
of the channel max pooling units randomly (initialized once, fixed during training
and testing). Each channel pooling unit pools over a fixed random support of a size
parameterized by CMP. Right: Explicit invariances enforced within deep networks
in prior art are mostly parametric in nature. The important problem of learning
non-parametric invariances from data has not received a lot of attention.

formations result in useful hand-crafted priors in data such as rotation and scale

[17, 18, 20, 42, 23, 24, 25]. It is important to note however that these methods ul-

timately were limited to hand-crafted invariances assumed to be useful for the task

at hand.

Motivation of this Study: In this study, we motivate and investigate one

possible architecture that can learn invariances towards multiple transformations

from data itself. At the heart of the architecture is the structure called the perma-

nent random connectome. This simply refers to a channel shuffling layer that uses

a fixed shuffling schedule throughout the life of the network (including training and

testing) resulting in a permanent connectome. Importantly however, this shuffling

26

indexing is chosen at random at the initialization of the network. Thereby leading

to the layer being referred to as the permanent random connectome. We find that

layers utilizing the permanent random operation allow architectures to learn multi-

ple invariances efficiently from data itself. Our motivation also loosely stems from

observations regarding connectomes in the cortex.

Encoding Invariances through Deep Architectures. Before delving

into methods which learn such invariances, it is important to study methods which

incorporate known invariances in data. Many times it is the case that a few most

predominant nuisance transformations in data are well understood. Visual data is

one such domain with translation being perhaps the most common nuisance trans-

formation emerging. An early method to incorporate this prior into the algorithm

was the Convolutional Neural Network (ConvNet) [7] with the pooling operation

following the convolution. The success of ConvNets indicates that addressing pre-

dominant invariances in data warrants being a major objective. Over the years,

there have been efforts in investigating what other transformations would result in

similar breakthroughs. Rotation was investigated at length with studies rotating

the inputs [17] and the convolution filters [18, 20]. Similarly combinations of rota-

tion, scale and translation invariances were explored [42] along with more general

parametric invariances [23, 24, 25]. These efforts provided valuable insights into the

nature of visual data leading to more powerful networks, albeit for specific or special-

ized tasks. For more general tasks, methods which focused on better optimization,

minimizing better objectives and developing more effective architectures proved to

be more successful. Nonetheless, it is important to note that though these meth-

ods were motivated differently, they ultimately provided hand-crafted invariances

assumed to be useful for the task at hand.

27

Incorporating known invariances using deep networks. Convolu-

tional architectures have seen many efforts to produce rotation invariant represen-

tations. [16] and [17] rotate the input itself before feeding it into stacks of CNNs

and generating rotation invariant representations through gradual pooling or pa-

rameter sharing. [18, 19, 20] rotate the convolution filters (a cheaper albeit still

expensive operation) instead of transforming the input followed by pooling. A simi-

lar approach was explored for scale by [21]. An interesting direction of research was

explored by [22] where the rotation, scale and translation invariant filters were fixed

and non-trainable. [23, 24] presented methods to incorporate parametric invariances

using groups and warped convolutions. The transformations in [24, 25] are known

apriori and the sample grids and steerable filters are generated offline. This limits

the capability to learn arbitrary and adaptive transformations. NPTNs need no

such apriori knowledge apart that encoded in its architecture, can learn arbitrary

non-parametric transformations and finally are simpler and perhaps more elegant

in implementation.

4.1.2 Relaxed Biological Motivation for Randomly Initialized Con-

nectomes.

Although not central to our motivation, the observation that the cortex lacks precise

local pathways for back-propagation provided the initial inspiration for this study. It

further garnered pull from the observation that random unstructured local connec-

tions are indeed common in many parts of the cortex [43, 44]. Moreover, it has been

shown that orientation selectivity can arise in the visual cortex even through local

random connections [45]. Though we do not explore these biological connections in

more detail, it is still an interesting observation. There has also been some inter-

28

esting work which explored the use of random weight matrices for back propagation

[46]. Here, the forward weight matrices were updated so as to fruitfully use the ran-

dom weight matrices during back propagation. The motivation of the [46] study was

to address the biological implausibility of the transport of precise gradients through

the cortex due to the lack of exact connections and pathways [47, 48, 49, 50]. The

common presence of random connections in the cortex at a local level leads us to

ask: Is it possible that such locally random connectomes improve generalization in

deep networks? We provide evidence for answering this question in the positive.

Contributions. 1) We motivate permanent random connectomes from the

perspective of learning invariance to multiple transformations directly from data.

The fundamental problem of learning non -parametric invariances in perception has

not received enough attention. We present an architectural prior capable of such a

task with loose biological motivation. 2) We present a theoretical result on learning

invariances to transformations which do not obey a group structure in contrast to

prior work. 3) We provide results on learning invariances to individual and multiple

transformations in data without any change in architecture whatsoever. Further,

we demonstrate improvements in generalization while using PRC-NPTN as a drop

in replacement to conv layers in DenseNets. 4) Finally, as an engineering effort, we

develop fast and efficient CUDA kernels for random channel pooling which result

in efficient implementations of PRC-NPTNs in terms of computational speed and

memory requirements compared to traditional Pytorch code.

4.2 Permanent Random Connectome NPTNs

We begin by motivating permanent random connectomes from the perspective of

selecting the support for pooling. We find that permanent random channel pooling

29

invokes invariance to multiple transformations simultaneously. Investigating idea

of pooling across transformations to invoke invariance, permanent random pooling

emerges naturally. As part of our contribution, we present a theoretical result which

confirms a long standing intuition that max pooling invokes invariance.

4.2.1 Invoking Invariance through Max Pooling.

In previous years a number of theories have emerged on the mechanics of generating

invariance through pooling. [26, 27] develop a framework in which the transforma-

tions are modelled as a group comprised of unitary operators denoted by {g ∈ G}.

These operators transform a given filter w through the operation gw1, following

which the dot-product between these transformed filters and an novel input x is

measured through 〈x, gw〉. It was shown by [26] that any moment such as the

mean or max (infinite moment) of the distribution of these dot-products in the set

{〈x, gw〉|g ∈ G} is an invariant. These invariants will exhibit robustness to the

transformation in G encoded by the transformed filters in practice, as confirmed by

[4, 5]. Though this framework did not make any assumptions on the distribution of

the dot-products, it imposed the restricting assumption of group symmetry on the

transformations. We now show that invariance can be invoked even when avoiding

the assumption that the transformations in G need to form a group. Nonetheless,

we assume that the distribution of the dot-product 〈x, gw〉 is uniform and thus we

have the following result2.

Lemma 4.2.1. (Invariance Property) Assume a novel test input x and a filter w

both fixed vectors ∈ Rd. Further, let g denote a random variable representing unitary

1The action of the group element g on w is denoted by gw to promote clarity.
2We thank Purvasha Chakravarti for the proof. The assumption of the distribution being uniform

is meant to provide insight into the general behavior of the max pooling operation, rather than a
statement that deep learning features are uniformly distributed.

30

operators with some distribution. Finally, let Υ(x) = 〈x, gw〉, with Υ(x) ∼ U(a, b)

i.e. a Uniform distribution between a and b. Then, we have

Var(max Υ(x)) ≤ Var(Υ(x)) = Var(〈g−1x,w〉)

Proof. Let X be the random variable representing the randomness in 〈x, gw〉 for

fixed x,w and random g. We assume that X ∼ U(0, 1).

Considering a sample set X1, X2...Xn ∼ U(0, 1) , then X(n) = max1≤i≤nXn .

Now,

P (X(n) ≤ x) = P (Xi ≤ x, ∀i) (4.1)

= P (Xi ≤ x)n (4.2)

= xn (4.3)

Let the density of X(n) be denoted by fX(n)
(x), then

fX(n)
(x) =


0 x ≤ 0

nxn−1 0 ≤ x ≤ 1

1 x ≥ 1

Now,

E[X(n)] =

∫ 1

0
xnxn−1dx =

xn+1

n+ 1
n|10 =

n

n+ 1

E[X2
(n)] =

∫ 1

0
x2nxn−1dx =

xn+2

n+ 2
n|10 =

n

n+ 2

Therefore,

Var(X(n)) =
n

n+ 1
−
(

n

n+ 1

)2

=
n

(n+ 2)(n+ 1)2

Since the variance of U(0, 1) is 1
12 i.e. Var(Xi) = 1

12 , and Var(X(n)) is a decreasing

31

function in n, along with the fact that Var(X(n)) for n = 1 is 1
12 , we have

Var(X(n)) ≤ Var(Xi)

For general U(a, b), it follows shortly after considering Yi = Xi−a
b−a and that

Var(Yi) = Var(Xi). Finally, due to unitary g, 〈x, gw〉 = 〈g−1x,w〉.

This result is interesting because it shows that the max operation of the

dot-products has less variance due to g than the pre-pooled features. Though this

is largely known empirical result, a concrete proof for invoking invariance was so

far missing. More importantly, it bypasses the need for a group structure on the

nuisance transformations G. Practical studies such as [4, 5] had ignored the effects of

non-group structure in theory while demonstrating effective empirical results. Also

note that the variance of the max is less than the variance of the quantity 〈g−1x,w〉,

which implies that max Υ(x) is more robust to g even in test, though it has never

observed gx. This useful property is due to the unitarity of g.

4.2.2 Connection to Deep Networks.

PRC-NPTN as we will show, perform max pooling across channels not space, to

invoke invariance. In the framework 〈x, gw〉, w would be one convolution filter

with g being the transformed version of it. Note that this modelling is done only

to satisfy a theoretical construction, we do not actually transform filters in prac-

tice. All transformed filters are learnt through backpropagation. This framework is

already utilized in ConvNets. For instance, ConvNets [7] pool only across transla-

tions (convolution operation itself followed by spatial max pooling implies g to be

translation).

32

Transformation 1 (T1)
Tr

an
sf

or
m

at
io

n
2

(T
2)

Feature invariant to only T2

Feature invariant to only T1

(a) Homogeneous Structured Pooling

Transformation 1 (T1)

Tr
an

sf
or

m
at

io
n

2
(T

2)

Feature invariant to both T1 and T2

(b) Permanent Random Support Pooling

Figure 4.2: (a) Homogeneous Structured Pooling pools across the entire range
of transformations of the same kind leading to feature vectors invariant only to
that particular transformations. Here, two distinct feature vectors are invariant to
transformation T1 and T2 independently. (b) Heterogeneous Random Support
Pooling pools across randomly selected ranges of multiple transformations simul-
taneously. The pooling supports are defined during initialization and remain fixed
during training and testing. This results in a single feature vector that is invariant
to multiple transformations simultaneously. Here, each colored box defines the sup-
port of the pooling and pools across features only inside the boxed region leading
to one single feature.

Vectorize

Random Pooling across features Random Pooling across channels

(a) PRC-NPTN Random Channel Pooling

Figure 4.3: Vectorized Random Support Pooling extends this idea to con-
volutional networks, where one realizes that the random support pooling on the
feature grid (on the left) is equivalent to random support pooling of the vectorized
grid. Each element of the vector (on the right) now represents a single channel in
a convolutional network and hence random support pooling in PRC-NPTNs occur
across channels.

33

4.2.3 Invoking Invariance through Channel Pooling in Deep Net-

works.

Consider a grid of features that have been obtained through a dot product 〈x, gw〉

(for instance from a convolution activation map, where the grid is simply populated

with each k × k × 1 filter, not k × k × c) (see Fig. 4.2(a)). Assume that along the

two axes of the grid, two different kinds of transformation are acted. T1 along the

horizontal axis and T2 along the vertical. T1 = g1(·; θ1) where g1 is a transformation

parameterized by θ1 that acts on w and similarly T2 = g2(·; θ2). Now, pooling

homogeneously across one axis invokes invariance only to the corresponding g (for

a more in depth analysis see [26]). Similarly, pooling along T2 only will result in

a feature vector (Feature 2) invariant only to T2. These representations (Feature

1 and 2) have complimentary invariances and can be used for complimentary tasks

e.g. face recognition (invariant to pose) versus pose estimation (invariant to subject).

This approach has one major limitation that tihs scales linearly with the number

of transformations which is impractical. One therefore would need features that

are invariant to multiple transformations simultaneously. A simple yet effective

approach is to pool along all axes thereby being invariant to all transformations

simultaneously. However, doing so will result in a degenerative feature (that is

invariant to everything and discriminative to nothing). Therefore, the key is to

limit the range of pooling performed for each transformation.

4.2.4 Choosing the Support for Pooling at Random: Permanent

Random Connectomes.

A solution to trivial feature problem described above, is to limit the range or support

of pooling as illustrated in Fig.4.2(b). One simple way of selecting such a support for

34

pooling is at random. This selection would happen only once during initialization

of the network (or any other model), and will remain fixed through training and

testing. In order to increase the selectivity of such features, multiple such pooling

units are needed with such a randomly initialized support [26, 6]. These multiple

pooling units together form the feature that is invariant to multiple transformations

simultaneously, which improves generalization as we find in our experiments. This

is called heterogeneous pooling and Fig. 4.2(b) illustrates this more concretely. We

therefore find that permanent random pooling is motivated naturally through the

need to attain invariance to multiple transformations simultaneously.

4.2.5 The PRC-NPTN layer.

Fig. 4.1 shows the the architecture of a single PRC-NPTN layer . The PRC-NPTN

layer consists of a set of Nin × G filters of size k × k where Nin is the number of

input channels and G is the number of filters connected to each input channel. More

specifically, each of the Nin input channels connects to |G| filters. Then, a number of

channel max pooling units randomly select a fixed number of activation maps to pool

over. This is parameterized by Channel Max Pool (CMP). Note that this random

support selection for pooling is the reason a PRC-NPTN layer contains a permanent

random connectome. These pooling supports once initialized do not change through

training or testing. Once max pooling over CMP activation maps completes, the

resultant tensor is average pooled across channels with a average pool size such that

the desired number of outputs is obtained. After the CMP units, the output is

finally fed through a two layered network with the same number of channels with

1× 1 kernels, which we call a pooling network. This small pooling network helps in

selecting non-linear combinations of the invariant nodes generated through the CMP

35

operation, thereby enriching feature combinations downstream. For experimental

rigor, we also benchmark against the baseline ConvNet supplemented with this 1x1

pooling network.

Invariances in a PRC-NPTN layer. Recent work introducing NPTNs

[51] had highlighted the Transformation Network (TN) framework in which invari-

ance is generated during the forward pass by pooling over dot-products with trans-

formed filter outputs. A vanilla convolution layer with a single input and output

channel (therefore a single convolution filter) followed by a k×k spatial pooling layer

can be seen as a single TN node enforcing translation invariance with the number

of filter outputs being pooled over to be k× k. It has been shown that k× k spatial

pooling over the convolution output of a single filter is an approximation to channel

pooling across the outputs of k × k translated filters [51]. The output Υ(x) of such

an operation with an input patch x can be expressed as

Υ(x) = max
g∈G
〈x, gw〉 (4.4)

where G is the set of filters whose outputs are being pooled over. Thus, G defines

the set of transformations and thus the invariance that the TN node enforces. In a

vanilla convolution layer, this is the translation group (enforced by the convolution

operation followed by spatial pooling). An NPTN removes any constraints on G

allowing it to approximately model arbitrarily complex transformations. A vanilla

convolution layer would have one filter whose convolution is pooled over spatially

(for translation invariance). In contrast, an NPTN node has |G| independent fil-

ters whose convolution outputs are pooled across channel wise leading to general

invariance.

A PRC-NPTN layer inherits the property from NPTNs to learn arbitrary

36

transformations and thereby arbitrary invariances using G. As Fig. 4.1(b) shows,

individual channel max pooling (CMP) nodes act as NPTN nodes sharing a common

filter bank as opposed to independent and disjoint filter banks for vanilla NPTNs.

This allows for greater activation sharing, where transformations learned from data

through one subset of filters can be used for invoking similar invariances in a parallel

computation path. This sharing and reuse of activation maps allows for higher

parameter and sample efficiency. As we find in our experiments, randomization

plays a critical role here, allowing for a simple and quick approximation to obtaining

high performing invariances. A high activation map can activate multiple CMP

nodes, winning over multiple sub-sets of low activations. Gradients flow back to

these winning activations updating the filters to further model the features observed

during that particular batch. Note that, CMP nodes in the same layer can pool

over disjoint subsets to invoke a variety of invariances, leading to a more versatile

network and also better modelling of a particular kind of invariance as we find in

our experiments. Further, the primary source of invoking invariances in NPTN was

understood to be the symmetry of the unitary group action space [51]. General

invariances were assumed to be only approximately forming a group. Lemma 4.2.1

shows that group symmetry is not necessary to reduce variance of the quantity

max Υ(x) due to the action of the set elements g on some test input patch x. Though,

the result makes a strong assumption regarding the distribution of Υ(x), it to the

best of our knowledge the first result of its kind to show increased invariance without

a group symmetric action.

37

(a) Rotation 0◦ (b) Rotation 30◦ (c) Rotation 60◦ (d) Rotation 90◦

Figure 4.4: Only Rotation Transformation Results: Test error statistics with
mean and standard deviation on MNIST with progressively extreme random ro-
tations. ConvNet FC denotes the addition of a 2-layered pooling 1 × 1 pooling
network after every layer. Note that for this experiment, CMP=|G|. Permanent
Random Connectomes help with achieving better generalization despite increased
nuisance transformations.

4.3 Empirical Evaluation and Discussion

Goal. The goal of our evaluation study is to demonstrate PRC-NPTNs as capable of

learning transformations from data and to showcase improvements in generalization

in supervised classification over relevant baselines. The goal is not in fact, to compete

with the state of the art approaches for any dataset.

General Experimental Settings. For all experiments, we run all models

for 300 epochs trained using SGD. The initial learning rate was kept at 0.1 and

decreased by 10 at 50% and 75% epoch completion. Momentum was kept at 0.9

with a weight decay of 10−5. Batch size was kept at 64 for both MNIST and ETH-80

3. For the MNIST experiments, gradients were clipped to norm 1. Each block for

all baselines for ConvNet and PRC-NPTN had either a convolution layer or PRC-

NPTN layer followed by batch normalization, PReLU and spatial max pooling. The

convolutional kernel size for all models was kept at 5×5 for all MNIST experiments

3We provide experiments on CIFAR-10 in the supplementary.

38

(a) Translation 0 pixels (b) Translation 4 pixels (c) Translation 8 pixels (d) Translation 12 pix-
els

Figure 4.5: Only Translation Transformation Results: Test error statistics
with mean and standard deviation on MNIST with progressively extreme random
pixel translations. ConvNet FC denotes the addition of a 2-layered pooling 1 ×
1 pooling network after every layer. Note that for this experiment, CMP=|G|.
Permanent Random Connectomes help with achieving better generalization despite
increased nuisance transformations.

and 3×3 for all other models. Spatial max pooling of size 3×3 was performed after

every layer, BN and PReLU for MNIST models.

Limitations in Typical Implementations and Developing Faster Ker-

nels. Our implementation with traditional PyTorch still suffered from heavy GPU

memory use and slower run times despite optimizing code at the PyTorch abstraction

level. The key bottleneck in computational and memory efficiency was found to be

the randomized channel pooling operation. The issue was addressed by developing

CUDA kernels that performed pooling on non-contiguous blocks of memory with-

out creating copies of the same. This allowed for faster non-contiguous pooling over

feature and activation maps with a significant reduction in memory usage. The op-

eration was built as a CUDA-kernel that is interfaced with PyTorch through CuPy.

This engineering effort is part of our contribution and we demonstrate improvements

in memory and computational efficiency in our experiments (see Fig. 4.6). We ob-

serve a consistent speed up of atleast 1.5x and a significant reduction in memory

39

3 4 5 6 7

Depth (# of layers)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r
(x

T
im

e
s
)

Wall Time Speedup

Memory Decrease Factor

(a) Depth

1 2 3 4

CMP (channel max pooling)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r
(b) CMP

20 40 60 80 100 120

Width (# of channels)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r

(c) Width

5 10 15 20

G (growth factor)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r

(d) Growth Factor

Figure 4.6: Computational efficiency improvements of our CUDA implementations.

usage.

4.3.1 Efficacy in Learning Arbitrary and Unknown Transforma-

tions Invariances from Data.

We evaluate on one of the most important tasks of any perception system, i.e. being

invariant to nuisance transformations learned from the data itself. Most other ar-

chitectures based on vanilla ConvNets learn these invariances through the implicit

neural network functional map rather than explicitly through the architecture as

PRC-NPTNs. Moreover, most previous approaches needed hand crafted architec-

tures to handle different transformations. We benchmark our networks based on

tasks where nuisance transformations such as large amounts of in-plane rotation

and translation are steadily increased, with no change in architecture whatsoever.

For this purpose, we utilize MNIST where it is straightforward to add such trans-

formations without any artifacts.

Protocol: We benchmark on such a task as described in [51] and for fair

comparisons, we follow the exact same protocol. We train and test on MNIST

augmented with progressively increasing transformations i.e. 1) extreme random

translations (up to 12 pixels in a 28 by 28 image), 2) extreme random rotations (up

40

(a) (0◦, 0 pix) (b) (30◦, 4 pix) (c) (60◦, 8 pix) (d) (90◦, 12 pix)

Figure 4.7: Simultaneous Transformation Results: Test error statistics with
mean and standard deviation on MNIST with progressively extreme transformations
with random rotations and random pixel shifts simultaneously. For PRC-
NPTN and NPTN the brackets indicate the number of channels in the layer 1 and
G. Note that for this experiment, CMP=|G|.

to 90◦ rotations) and finally 3) both transformations simultaneously. Both train and

test data were augmented randomly for every sample leading to an increase in overall

complexity of the problem. No architecture was altered in anyway between the two

transformations i.e. they were not designed to specifically handle either. The same

architecture for all networks is expected to learn invariances directly from data

unlike prior art where such invariances are hand crafted in [18, 20, 22, 21, 23, 24].

For this experiment, we utilize a two layered network with the intermediate

layer 1 having up to 36 channels and layer 2 having exactly 16 channels for all

networks (similar to the architectures in [51]) except a wider ConvNet baseline

with 512 channels. All ConvNet, NPTN and PRC-NPTN models have the similar

number of parameters (except the ConvNet with 512 channels). For PRC-NPTN,

the number of channels in layer 1 was decreased from 36, through to 9 while |G|

was increased in order to maintain similar number of parameters. All PRC-NPTN

networks have a two layered 1×1 pooling network with same number of channels as

that layer. For a fair benchmark, Convnet FC has 2 two-layered pooling networks

41

with 36 channels each. Average test errors are reported over 5 runs for all networks.

Discussion. We present all test errors for this experiment in Fig. 4.4, Fig. 4.5

and Fig. 4.74. From both figures, it is clear that as more nuisance transformations

act on the data, PRC-NPTN networks outperform other baselines with the same

number of parameters. In fact, even with significantly more parameters, ConvNet-

512 performs worse than PRCN-NPTN on this task for all settings. Since the testing

data has nuisance transformations similar to the training data, the only way for a

model to perform well is to learn invariance to these transformations. It is also

interesting to observe that permanent random connectomes do indeed help with

generalization. Indeed, without randomization the performance of PRCN-NPTNs

drop substantially. The performance improvement of PRC-NPTN also increases

with nuisance transformations, showcasing the benefits arising from modelling such

invariances. This is particularly apparent from Fig. 4.7, where the two simultaneous

nuisance transformations pose a significant challenge. Yet, as the transformations

increase, the performance improvements increase as well.

4.3.2 Evaluation on the ETH-80 dataset

The ETH-80 dataset was introduced in [37] as a benchmark to test models against

3D pose variation of various objects. The dataset contains 80 objects belonging to 8

different classes. Each object has images from different viewpoints on a hemisphere

for a total of 41 images per object. The images were resized to 50×50 following [38].

This dataset is perfectly poised to test how efficiently a model can learn invariance

to 3D viewpoint variation.

Protocol: For this experiment, we follow the evaluation protocol as de-

4We display only the (12, 3) configuration for NPTN as it performed the best. The translation
results and more benchmarks with NPTNs are provided in the supplementary. We obtain similar
perforamnce improvements with extreme translation as well.

42

Figure 4.8: Sample images from the ETH-80 database. The dataset contains 80
objects belonging to 8 different classes. Each object has images from different view-
points on a hemisphere resulting in 3D pose and viewpoint variation for each object.

scribed in [38] 5. We randomly select 2,300 images to train and test on the rest.

For a fair comparison we retrain the ConvNet described in [38]. We design two

ConvNet architectures which reflect more modern architecture choices such as a

smaller FC layer or having only a global average pooling after a number of conv

layers. Table. 4.1 presents the architectures that we train for this experiment. Ev-

ery conv layer (except the first conv layer within a PRC-NPTN layer) is followed by

BatchNorm and ReLU. We train corresponding PRC-NPTN models that have fewer

parameters. For these experiments with PRC-NPTN, we replace the average pool-

ing across channels (not max pooling or CMP) with a 1× 1 convolution layer. We

do this to explore the effect of weighted pooling instead of vanilla channel average

pooling. To maintain a fair comparison, we compare against equivalent ConvNet

baselines with an extra 1 × 1 added. We also perform an ablation study with the

randomization removed. All models were trained with Adam with a learning rate

5We also present results on a harder protocol we devised in the supplementary

43

Architecture

ConvNet B C(12) - C(24) - C(48) - C(48) - GAP - FC(300) - FC(200) - FC(8)
NPTN-large B C(12) - NPTN(24) - NPTN(48) - NPTN(48) - GAP - FC(300) - FC(200) - FC(8)
NPTN-small B C(12) - NPTN(8) - NPTN(24) - NPTN(48) - GAP - FC(300) - FC(200) - FC(8)
PRC-NPTN B C(12) - PRC(24) - PRC(48) - PRC(48) - GAP - FC(300) - FC(200) - FC(8)
ConvNet C C(12) - C(24) - C(48) - C(64) - C(128) - GAP - FC(8)
PRC-NPTN C C(12) - PRC(24) - PRC(48) - PRC(64) - PRC(128) - GAP - FC(8)

Table 4.1: Architectures tested on ETH-80. C - convolution layer, FC - fully
connected layer, PRC - PRC-NPTN layer, NPTN - NPTN layer, GAP - global
average pooling layer. Every Conv, NPTN and PRC-NPTN layer was followed by a
spatial pooling layer of kernel size 2 except the last layer before the GAP. The 1× 1
versions of these architectures have a 1× conv layer after every 3×3 layer except the
first C(12) layer. ConvNet B was designed to be similar to the architecture explored
in Khasanovaet.al., 2017 however with more layers. ConvNet C was designed to
be more aligned with modern architecture choices such as global average pooling
followed by just one FC layer.

of 0.01 for 100 epochs and a batch size of 64. Each architecture was trained 10

separate times with the mean of the runs being reported.

Discussion: We showcase the results in Table. 4.2. We find that of the two

different types of architectures that we explore, PRC-NPTNs outperform both cor-

responding ConvNet architectures. Further, they do so not only with fewer number

of parameters, but also fewer number of 3 × 3 filters. In fact, PRC-NPTN C for

|G| = 8 and CMP=4 outperforms the corresponding ConvNet C architectures with a

2.97× reduction in the number of parameters and a 10.44× reduction in the number

of 3 × 3 convolution filters. Similarly, PRC-NPTNs outperform two architectures

of NPTNs [51] both with significantly fewer parameters and 3 × 3 filters. These

results illustrate that PRC-NPTN can utilize filters and parameters more efficiently

on a classification problem which requires 3D pose invariance. This efficiency we

conjecture, is due to the fact that permanent random pooling results in an inductive

bias that explicitly helps the learning of multiple invariances within the same layer

thereby vastly increasing model capacity. Note that the almost 3X reduction in the

44

Method (Protocol 1) Accuracy (%) #params Factor #filters Reduction

ConvNet* 93.69 1.4M 230 -
NPTN* 96.2 1.4M 230 -

ConvNet B 95.61 110K 1× 3780 1×
ConvNet B (1× 1) 94.54 115K 0.95× 3780 1×
NPTN-large B (3) 94.63 189K 0.58× 11268 0.33×
NPTN-small B (3) 95.09 120K 0.91× 4356 0.86×
PRC-NPTN B (8, 2) 96.72 97K 1.13× 708 5.33×
ConvNet C 93.90 116K 1× 12740 1×
ConvNet C (1× 1) 95.98 138K 0.84× 12740 1×
PRC-NPTN C (8, 2) 95.93 64K 1.81× 1220 10.44×
PRC-NPTN C (8, 4) 96.40 39K 2.97× 1220 10.44×

Table 4.2: Test accuracy on ETH-80 Protocol 1. ∗ indicates the result was ob-
tained from the corresponding paper (Khasanova et.al., 2017 and Pal and Savvides,
2019), and is not on the split used for our experiments. For NPTN is number in the
bracket denotes |G|, for PRC-NPTN the numbers denote |G| and CMP respectively.

number of parameters and 10X reduction in the number of filters is achieved without

the use of any network pruning or post processing methods. Note that competing

methods presented in [38] all perform comparably however with 1.4 million parame-

ters each with the highest result being TIGradNet [38] at 95.1, HarmNet at 94.0 [41].

PRC-NPTN outperforms these methods which were designed to invoke invariances

through inductive biases while using a fraction of the number of parameters.

4.3.3 Efficacy on CIFAR-10 Image Classification.

MNIST was a good candidate for the previous experiment where the addition of

nuisance transformations such as translation and rotation did not introduce any

artifacts. However, in order to validate permanent random connectomes on more

realistic data, we utilize the CIFAR-10 dataset and AutoAugmentation [52] as the

nuisance transformation. Note that, from the perspective of previous works in net-

work invariance, it is unclear how to hand craft architectures to handle invariances

45

due to the variety of transformations that AutoAugment invokes. Here is where the

general invariance learning capability of PRC-NPTNs would help, without the need

of expertise in such hand-crafting.

Protocol: We replace vanilla convolution layers with kernel size 3 in DenseNets

with PRC-NPTNs without the 2-layered pooling networks. There was another mod-

ification for this experiment. For each input channel of a layer, a total of |G| = 12

filters were learnt. However only a few of them were pooled over (channel max pool

or CMP). We pool with CMP = 1, 2, 3 or 4 channels randomly keeping |G| = 12 fixed

always. Note that in contrast with the MNIST experiment, pooling was always done

over |G| number of channels (CMP=|G|). This provides a different setting under

which PRC-NPTN can be utilized. All models in this experiment were trained with

AutoAugment and were tested on both a) the original testing images and also on b)

the test set transformed by AutoAugment. Similarly to the previous experiment, a

model would have learn invariance towards these auto-augment transformations in

order to perform well. All DenseNet models have 12 layers with the PRC-NPTN

variant having the same number of parameters to enable us to perform multiple runs

in a reasonable amount of time. The lower accuracy compared to other studies can

be accounted by this. We train 5 models for each setting and report the mean and

standard deviation of the errors. Training 5 runs for each of the hyperparameter

combination to account for the randomization is yet another reason which tended

to result in unreasonably large experiment times. Importantly, the goal of this ex-

periment is not to push the state-of-the-art, but rather to investigate the behavior

of DensePRC-NPTNs within the limits of computational resources available for this

study while executing 5 runs for each network.

Discussion. Table. 4.3 presents the results of this experiment. We find

46

Method CIFAR-10 (no Rand) CIFAR 10++ (no Rand) Speed Memory

DenseNet 11.47±0.19 - 21.37±0.29 -

PRCN (1) 11.82±0.20 13.33±0.23 22.03±0.08 23.88±0.38 1.29x 2.92x
PRCN (2) 10.78±0.31 11.67±0.36 20.71±0.23 21.90±0.33 1.34x 1.96x
PRCN (3) 10.95±0.12 11.59±0.23 20.95±0.20 21.80±0.42 1.36x 1.64x
PRCN (4) 10.61±0.11 11.41±0.12 20.80±0.12 21.47±0.16 1.36x 1.48x

Table 4.3: Efficacy on CIFAR-10: Test error statistics on CIFAR-10 with mean
and standard deviation. ++ indicates AutoAugment testing. Each DenseNet and
its corresponding PRC-NPTN variant has the same number of parameters (number
in bracket determines CMP). |G| = 12 for PRC-NPTN and growth rate was kept at
12 for DenseNet-Conv. (w/o Random) indicates no randomization in the connec-
tomes constructed (as an ablation study). The speed and memory improvements are
multiplicative improvement factors of our CUDA kernel implementation compared
to baseline optimized PyTorch code.

PRC-NPTN provides clear benefits even with architectures employing heavy use of

skip connections such as DenseNets with the same number of parameters. Perfor-

mance seems to increase as channel max pooling increased. Further, randomization

seems to be important to the overall architecture even when given the complex

nature of real image transformations. PRC-NPTN helps DenseNets account for nui-

sance transformations better even for those as extreme as auto-augment with its

16 transformation types ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert,

Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout, Sam-

ple Pairing to various degrees. With these evidence, it is interesting to find that

random connectomes can be motivated from the perspective of learning heteroge-

neous invariances from data without any change in architectures. We find that they

provide a promising alternate dimension in future network design in contrast to the

ubiquitous use of highly structured and ordered connectomes.

47

(a) Test Performance (b) No. of Parameters (in thousands)

Figure 4.9: PRC-NPTNs allow for significantly smaller networks with sim-
ilar performance. PRC-NPTNs provide a factor between 6.6× to 9.2× worth
of reduction in parameters while suffering a test accuracy degradation only be-
tween 3.08% to 4.82%. Whereas, using the same number of parameters, PRC-NPTN
achieves 82.84% test accuracy versus the baseline 80.67%.

4.3.4 Exploring parameter reduction due to PRC-NPTNs

Until now, we have focused on the benefits of permanent random connectomes on

better modelling nuisance transformations by learning these from the data itself.

Though these provide performance and accuracy benefits per say, it is equally inter-

esting to ask the corollary question: Given a certain level of performance in terms

of accuracy, how low can the parameter requirement be pushed to?

We have seen a hint of such benefits in terms of parameters and the size

of the network in Table. 4.2 showcasing the results on the ETH-80 dataset. We

observed a healthy decrease factor in the number of parameters of up to 2 to 3 times.

Additionally, an almost 5 to 10 times reduction in the number of convolutional filters

being employed while obtaining similar or slightly greater accuracy. Though, these

48

Figure 4.10: PRC-NPTN version of ResNets allow for significantly smaller
networks with similar performance. PRC-NPTNs provide a factor between
1.93× to 6.1× worth of reduction in parameters while suffering a test accuracy
degradation only between 1% to 2.2%.

results seem interesting, it would be useful if PRC-NPTNs displayed similar levels

of computational savings and competitive performance in more real-world datasets

such as CIFAR 10 and larger more mainstream architectures.

Protocol: For this experiment, we explore two separate architectures on

CIFAR 10. a) The first is a four layered vanilla convolution network with batch nor-

malization, b) the second being the standard ResNet 18 architecture (BasicBlock),

c) the popular VGG architecture and finally d) a 6 layered DenseNet. The set of

these structures and their variations have been used extensively across many differ-

ent applications. We follow a similar experimentation protocol as we did for CIFAR

10 in section 4.3.3. For both the vanilla ConvNet and ResNet 18 architecture, we

also benchmark performance against the 1x1 version of these networks where are

every convolution layer (except the first one), we add in a 1x1 layer to have the base-

lines be closer to the complexity of the PRC-NPTN layer with the 1x1 convolution

layers (the pooling network). For ResNet 18, the default 1x1 layer in the bottleneck

49

(a) PRC-NPTN FLOPS (b) ResNet PRC-NPTN FLOPS

Figure 4.11: PRC-NPTNs allow for significantly more efficiently networks
with similar performance. Both for the four layered network and ResNet, the
PRC-NPTN versions provide significant improvements in terms of FLOP reduction.

layer of the residual block doubled as the pooling network for the PRC-NPTN.

For PRC-NPTN version of the vanilla ConvNet we kept G=CMP while rang-

ing the value between 1, 4 and 6 and also keeping G high enough so that number of

filters in the network is the same as the baseline. This version is labelled as G=full

in the result figures. For ResNet 18, we varied G similarly, however we also bench

marked a second version of PRC-NPTN where both the convolution layers in the

ResNet block were replaced with the PRC-NPTN variants for varying G. For VGG

19 and DenseNet, we kept G=CMP and varied as similarly between 1, 4 and 6.

Discussion: Fig. 4.9, Fig 4.10 and Table. 4.4 present the results of this ex-

periment. We find that in Fig. 4.9, PRC-NPTNs provide a factor between 6.6× to

9.2× worth of reduction in parameters while only suffering from a 3.08% to 4.82%

drop in test accuracy. Furthermore, while using the same number of parameters,

50

Method Test Acc. % change Parameters % decrease

VGG 19 93.97% - 20.04 M -
VGG 19 - PRCN 93.61% 0.38% decr. 14.63 M 26.99%

DenseNet 88.08% - 44.41 K -
DenseNet - PRCN 89.1% 1.15% incr. 32.31 K 27.24%

Table 4.4: PRC-NPTNs allow for significantly smaller networks with sim-
ilar performance. PRC-NPTN versions of VGG 19 and DenseNet allow for about
a 27% decrease in the number of parameters while suffering only a marginal decrease
in accuracy in the case of VGG 19.

PRC-NPTNs achieve 82.84% accuracy versus 80.67% test accuracy consistent with

previously observed trends. Even with residual networks as shown in Fig 4.10, PRC-

NPTNs provide a factor between 1.93× to 6.1× worth of reduction in parameters

while suffering a test accuracy degradation only between 1% to 2.2%. Table. 4.4 pro-

vides similar observations in the case of VGG 19 and a smaller DenseNet. Further,

from Fig. 4.11 we find up to 5× to 9× more efficiency in terms of FLOPs between

the a) four layered PRC-NPTN network and the b) PRC-NPTN version of ResNet

18 compared to their corresponding baselines. This showcases that architectural

choices within the convolution layer itself do matter in terms of both accuracy and

computational performance. Such benefits can expand to a large array of network

architectures such as VGG, ResNets and DenseNets.

4.3.5 Pruning PRC-NPTNs for extreme parameter reduction

Until now, we have explored the benefits that the ideas of permanent random connec-

tomes bring to the table in terms of better prediction performance, transformation

modelling and computational complexity savings. We saw that networks employing

PRC-NPTNs can allow significantly smaller sized networks compared to baselines to

offer competing performance. This begs the question, how do PRC-NPTNs behave,

51

when parameter efficiency is pushed to the limit through the practice of pruning

deep networks? Pruning is an area that has gained popularity in recent years as a

way to distill a large trained network down to a smaller size, while keeping most of its

prediction performance intact. It is clear that the goal of such a process aligns with

one of the practical motivations of PRC-NPTNs, i.e. to provide maximum predic-

tion performance for a given amount of limited computational resources/parameters.

In these experiments, we demonstrate that applying standard off-the-shelf pruning

techniques to PRC-NPTNs provide a distilled (smaller/lower parameter networks)

which offer better performance than vanilla ConvNet baselines.

Protocol: We utilized L1 pruning in these experiments. Here, a filter is

chosen to prune out if the L1 norm of its response is in the bottom segment as

defined by a hyperparameter. This effectively only keeps filters that on average

provide high enough activation responses. The pruning factor can be set between 1

(no pruning) down to 0 (complete pruning). It can be understood as the factor or

percent of parameters to keep while pruning/permanently deactivating the rest. We

followed the standard experiment protocols for training on CIFAR 10 as in previous

experiments. Once the network is trained, it is pruned in the trained state using

a chosen pruning factor. Once the network is pruned, it is finetuned again using

the same 300 epoch protocol with a learning rate starting from 0.01 decreased by a

factor of 10 at 150 and 250 epochs. In this manner, a curve is formed by training

a single model for a given fixed set of parameters, and then pruning the network

for different amounts and finetuning. Thereby this is pruning at a single shot for a

single amount and not iteratively as the degree of pruning increases. To study the

effects of varying CMP, we bench-marked PRC-NPTNs for G fixed at 6 and ranged

CMP from 2 through 12. On the other hand, to study the study of varying G, we

52

Figure 4.12: Varying CMP: PRC-NPTN pruning for different amounts.
Different models have varying CMP PRC-NPTN along with pruning allows
control over focus on performance at lower or higher parameter regimes. Each curve
is a separate model trained for a different value of CMP. The yellow PRC-NPTN
curve shows better performance at high parameter regime for low CMP. On the other
hand, the dark blue PRC-NPTN curve shows better performance at low parameter
regime using high CMP.

bench-marked PRC-NPTNs for CMP fixed at 8 and ranged G from 2 through 12.

Discussion: Fig. 4.12 and Fig. 4.13 showcase the results of this experiment.

We find that PRC-NPTNs do indeed provide significantly higher test performance

for a given parameter budget at the lower parameter settings. In fact, at around

1100 parameters in Fig. 4.12, PRC-NPTNs with CMP higher than 2 provide accura-

cies in the range around 60% whereas baseline ConvNet achieved 50% and in fact the

deeper ConvNet 1× 1 baseline achieved only 30% accuracy. Furthermore and inter-

estingly, we observe that for lower CMP=2, PRC-NPTN outperforms both baselines

with an accuracy of 82.44% using 40.4K parameters versus the highest achieved by

ConvNet baseline of 82.33% using 68.9K parameters. Hence, PRC-NPTNs provide

this additional tuning parameter called CMP or channel max pooling, using with

53

Figure 4.13: Varying G: PRC-NPTN pruning for different amounts. Dif-
ferent models have varying G PRC-NPTN along with pruning allows control
over focus on performance at lower or higher parameter regimes. Each curve is a
separate model trained for a different value of G. The yellow PRC-NPTN curve
shows better performance at low parameter regime for low G. On the other hand,
the dark blue PRC-NPTN curve shows better performance at high parameter regime
using high G.

higher performance can be desired in lower and higher parameter settings. We find

similar trends in Fig. 4.13 with much higher performance at even lower ranges. How-

ever, performance peaks out in the higher parameter regime with larger G. Overall,

this provides a new and effective dimension along with one can decide how best to

utilize the resources utilized by the network. Such a dimension simply does not exist

with baseline architectures which do not have the PRC-NPTN structure.

Choosing G and CMP: Looking at these results, we find that a potential

method of choosing hyperparameters G and CMP is to have it depend on the com-

pute resources of the application at hand. If the application is able to support larger

models and provide more resources to the model to perform, then a higher G and

lower CMP PRC-NPTN is expected to be beneficial. However, for compute con-

54

strained environments such as edge devices etc., a lower G and higher CMP might

prove to be more useful. These are simply heuristics upon which this decision need

be made. Some amount of hyperparameter optimization will nonetheless be needed

to pick optimum values for any application and it’s data. That said, PRC-NPTNs

do provide a new dimension along which networks can be further optimized to pro-

vide benefits that can adapt to each individual application. This was previously not

possible with vanilla ConvNets and it’s derivative structures.

55

Chapter 5

The Next Chapter

The study of representation learning seems to be right at the heart of perception

and reasoning. Indeed, developing invariance and striving towards an invariant

representation lies at the center of better generalization, robustness, sample and

computational efficiency. Given these benefits, one does wonder why hasn’t the core

vanilla convolution layer adapted to better learn and enforce invariance. Address-

ing this need and exploring some useful principles along the way was the primary

objective of this endeavour.

We presented the Transformation Network paradigm, which was the first

attempt at efficiently learning and enforcing invariance within a convolution layer.

Building on top, we developed Non-Parametric Transformation Networks (NPTNs)

which are capable of learning transformation invariance from data itself. NPTN

being a direct generalization of the convolution layer provided deeper insights into

what makes a network generalize better. The channel max pooling operation not

only served as an approximate invariant function, but also dynamically and cheaply

directed flow of information through a network.

56

Following these insights, we sought to apply them to the question, why do

biological circuits having almost entirely random connectivity at local level still pro-

vide consistent visual perception? Interestingly, we observe that these unchanging

random connectomes in fact help to drastically reduce the complexity of the net-

work to generate invariance. This is the first glimpse towards the paradigm that

randomness in biological circuits is not something to overcome and work around,

but rather is an asset towards better efficiency and generalization. Using these in-

sights, we developed Permanent Random Connectome Networks or PRCNs. These

networks provided further performance benefits compared to NPTNs and also ob-

served significant parameter efficiency. Indeed, many of the networks that offered

similar performance to the baseline networks were many times smaller in size. This

throws light onto what core mechanisms are critical in information processing within

networks and which are not.

These observations force us to explore more efficient neural architectures and

to be inspired by biological mechanisms not for its own sake, but rather solely from

the perspective of functionality. The approach of understanding theoretical princi-

ples driving perception in artificial networks, and then looking for these principles in

the structure and functioning of biological circuits, promises to be extremely valu-

able. Naturally, one must be vary of ones own biases and also let biology and theory

guide us through mutual reinforcement. An idea that is theoretically useful must

be present in biology in some form and vice versa for the idea to have merit towards

the how intelligence in implemented in nature. This is the process that this thesis

provides evidence towards, and is the one that I hope to adhere to in the future.

The ambition shall always remain:

To reason about perceiving while better perceiving reasoning.

57

Bibliography

[1] Robert Gens and Pedro M Domingos, “Deep symmetry networks,” in Advances

in neural information processing systems, 2014, pp. 2537–2545. (document),

1.2, 3.1, 3.2, 4.1.1

[2] Partha Niyogi, Federico Girosi, and Tomaso Poggio, “Incorporating prior in-

formation in machine learning by creating virtual examples,” Proceedings of

the IEEE, vol. 86, no. 11, pp. 2196–2209, 1998. 1

[3] Raia Hadsell, Sumit Chopra, and Yann LeCun, “Dimensionality reduction by

learning an invariant mapping,” in Computer vision and pattern recognition,

2006 IEEE computer society conference on. IEEE, 2006, vol. 2, pp. 1735–1742.

1, 4.1.1

[4] Qianli Liao, Joel Z Leibo, and Tomaso Poggio, “Learning invariant representa-

tions and applications to face verification,” in Advances in Neural Information

Processing Systems, 2013, pp. 3057–3065. 1, 1.2, 2.4, 3.2, 4.2.1, 4.2.1

[5] Dipan K Pal, Felix Juefei-Xu, and Marios Savvides, “Discriminative invariant

kernel features: a bells-and-whistles-free approach to unsupervised face recogni-

tion and pose estimation,” in Proceedings of the IEEE Conference on Computer

58

Vision and Pattern Recognition, 2016, pp. 5590–5599. 1, 1.2, 2.4, 3.2, 4.2.1,

4.2.1

[6] Dipan K. Pal, Ashwin Kannan, Gautam Arakalgud, and Marios Savvides,

“Max-margin invariant features from transformed unlabelled data,” in Ad-

vances in Neural Information Processing Systems 30, 2017, pp. 1438–1446. 1,

1.2, 2.2, 2.4, 4.2.4

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-

based learning applied to document recognition,” Proceedings of the IEEE, vol.

86, no. 11, pp. 2278–2324, 1998. 1.1, 4.1.1, 4.1.1, 4.2.2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual

learning for image recognition,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 770–778. 1.1

[9] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten,

“Densely connected convolutional networks,” arXiv preprint arXiv:1608.06993,

2016. 1.1

[10] Sergey Zagoruyko and Nikos Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016. 1.1

[11] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi

Feng, “Dual path networks,” in Advances in Neural Information Processing

Systems, 2017, pp. 4470–4478. 1.1

[12] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-excitation networks,” arXiv

preprint arXiv:1709.01507, 2017. 1.1

59

[13] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton, “Dynamic routing be-

tween capsules,” in Advances in Neural Information Processing Systems, 2017,

pp. 3859–3869. 1.1, 3.3.4

[14] Jyri J Kivinen and Christopher KI Williams, “Transformation equivariant

boltzmann machines,” in International Conference on Artificial Neural Net-

works. Springer, 2011, pp. 1–9. 1.2

[15] Kihyuk Sohn and Honglak Lee, “Learning invariant representations with local

transformations,” arXiv preprint arXiv:1206.6418, 2012. 1.2

[16] Beat Fasel and Daniel Gatica-Perez, “Rotation-invariant neoperceptron,” in

Pattern Recognition, ICPR. 18th International Conference on. IEEE, 2006,

vol. 3, pp. 336–339. 1.2, 3.2.1, 4.1.1

[17] Sander Dieleman, Kyle W Willett, and Joni Dambre, “Rotation-invariant con-

volutional neural networks for galaxy morphology prediction,” Monthly notices

of the royal astronomical society, vol. 450, no. 2, pp. 1441–1459, 2015. 1.2,

3.2.1, 4.1.1, 4.1.1

[18] Damien Teney and Martial Hebert, “Learning to extract motion from videos

in convolutional neural networks,” in Asian Conference on Computer Vision.

Springer, 2016, pp. 412–428. 1.2, 3.1, 3.2, 3.2.1, 3.2.2, 4.1.1, 4.1.1, 4.3.1

[19] Fa Wu, Peijun Hu, and Dexing Kong, “Flip-rotate-pooling convolution and

split dropout on convolution neural networks for image classification,” arXiv

preprint arXiv:1507.08754, 2015. 1.2, 2.4, 3.1, 3.2, 3.2.1, 3.2.2, 4.1.1

[20] Junying Li, Zichen Yang, Haifeng Liu, and Deng Cai, “Deep rotation equivari-

60

ant network,” arXiv preprint arXiv:1705.08623, 2017. 1.2, 2.4, 3.1, 3.2.1, 3.2.2,

4.1.1, 4.1.1, 4.3.1

[21] Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, and Zheng

Zhang, “Scale-invariant convolutional neural networks,” arXiv preprint

arXiv:1411.6369, 2014. 1.2, 4.1.1, 4.3.1

[22] Laurent Sifre and Stéphane Mallat, “Rotation, scaling and deformation in-

variant scattering for texture discrimination,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2013, pp. 1233–1240. 1.2,

4.1.1, 4.3.1

[23] Taco Cohen and Max Welling, “Group equivariant convolutional networks,”

in International Conference on Machine Learning, 2016, pp. 2990–2999. 1.2,

4.1.1, 4.1.1, 4.3.1

[24] João F Henriques and Andrea Vedaldi, “Warped convolutions: Efficient in-

variance to spatial transformations,” in International Conference on Machine

Learning, 2017. 1.2, 4.1.1, 4.1.1, 4.3.1

[25] Taco S Cohen and Max Welling, “Steerable cnns,” arXiv preprint

arXiv:1612.08498, 2016. 1.2, 4.1.1, 4.1.1

[26] Fabio Anselmi, Joel Z Leibo, Lorenzo Rosasco, Jim Mutch, Andrea Tacchetti,

and Tomaso Poggio, “Unsupervised learning of invariant representations in

hierarchical architectures,” arXiv preprint arXiv:1311.4158, 2013. 1.2, 2.2, 2.3,

2.3, 2.4, 4.1.1, 4.2.1, 4.2.3, 4.2.4

[27] Fabio Anselmi, Georgios Evangelopoulos, Lorenzo Rosasco, and Tomaso Pog-

61

gio, “Symmetry regularization,” Tech. Rep., Center for Brains, Minds and

Machines (CBMM), 2017. 1.2, 2.4, 4.2.1

[28] Koray Kavukcuoglu, Rob Fergus, Yann LeCun, et al., “Learning invariant

features through topographic filter maps,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1605–

1612. 1.2

[29] Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang W Koh, Quoc V Le, and

Andrew Y Ng, “Tiled convolutional neural networks,” in Advances in neural

information processing systems, 2010, pp. 1279–1287. 1.2

[30] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang, “Transforming auto-

encoders,” in International Conference on Artificial Neural Networks. Springer,

2011, pp. 44–51. 1.2

[31] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov, “Dropout: a simple way to prevent neural networks

from overfitting.,” Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929–1958, 2014. 1.2

[32] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus, “Reg-

ularization of neural networks using dropconnect,” in Proceedings of the 30th

International Conference on Machine Learning (ICML-13), 2013, pp. 1058–

1066. 1.2

[33] Matthew D Zeiler and Rob Fergus, “Stochastic pooling for regularization of

deep convolutional neural networks,” arXiv preprint arXiv:1301.3557, 2013.

1.2

62

[34] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He, “Explor-

ing randomly wired neural networks for image recognition,” arXiv preprint

arXiv:1904.01569, 2019. 1.2

[35] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and

Yoshua Bengio, “Maxout networks,” in International Conference on Machine

Learning, 2013, pp. 1319–1327. 2.1

[36] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in International confer-

ence on machine learning, 2015, pp. 448–456. 3.3.1

[37] Bastian Leibe and Bernt Schiele, “Analyzing appearance and contour based

methods for object categorization,” in Computer Vision and Pattern Recogni-

tion, 2003. Proceedings. 2003 IEEE Computer Society Conference on. IEEE,

2003, vol. 2, pp. II–409. 3.3.2, 4.3.2

[38] Renata Khasanova and Pascal Frossard, “Graph-based isometry invariant rep-

resentation learning,” in International Conference on Machine Learning, 2017,

pp. 1847–1856. 3.3.2, 4.3.2, 4.3.2, 4.3.2

[39] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al., “Spatial trans-

former networks,” in Advances in Neural Information Processing Systems, 2015,

pp. 2017–2025. 3.3.2, 4.1.1

[40] Edouard Oyallon and Stéphane Mallat, “Deep roto-translation scattering for

object classification,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 2867–2873. 3.3.2

[41] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J

63

Brostow, “Harmonic networks: Deep translation and rotation equivariance,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017, pp. 5028–5037. 3.3.2, 4.3.2

[42] Stéphane Mallat and Irene Waldspurger, “Deep learning by scattering,” arXiv

preprint arXiv:1306.5532, 2013. 4.1.1, 4.1.1

[43] Joe Corey and Benjamin Scholl, “Cortical selectivity through random con-

nectivity,” Journal of Neuroscience, vol. 32, no. 30, pp. 10103–10104, 2012.

4.1.2

[44] Manuel Schottdorf, Wolfgang Keil, David Coppola, Leonard E White, and Fred

Wolf, “Random wiring, ganglion cell mosaics, and the functional architecture

of the visual cortex,” PLoS computational biology, vol. 11, no. 11, pp. e1004602,

2015. 4.1.2

[45] David Hansel and Carl van Vreeswijk, “The mechanism of orientation selec-

tivity in primary visual cortex without a functional map,” Journal of Neuro-

science, vol. 32, no. 12, pp. 4049–4064, 2012. 4.1.2

[46] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman,

“Random synaptic feedback weights support error backpropagation for deep

learning,” Nature communications, vol. 7, pp. 13276, 2016. 4.1.2

[47] Stephen Grossberg, “Competitive learning: From interactive activation to

adaptive resonance,” Cognitive science, vol. 11, no. 1, pp. 23–63, 1987. 4.1.2

[48] David G Stork, “Is backpropagation biologically plausible,” in International

Joint Conference on Neural Networks, 1989, vol. 2, pp. 241–246. 4.1.2

64

[49] Pietro Mazzoni, Richard A Andersen, and Michael I Jordan, “A more biologi-

cally plausible learning rule for neural networks.,” Proceedings of the National

Academy of Sciences, vol. 88, no. 10, pp. 4433–4437, 1991. 4.1.2

[50] Xiaohui Xie and H Sebastian Seung, “Equivalence of backpropagation and

contrastive hebbian learning in a layered network,” Neural computation, vol.

15, no. 2, pp. 441–454, 2003. 4.1.2

[51] Dipan K Pal and Marios Savvides, “Non-parametric transformation networks

for learning general invariances from data,” AAAI, 2019. 4.2.5, 4.2.5, 4.3.1,

4.3.1, 4.3.2

[52] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V

Le, “Autoaugment: Learning augmentation policies from data,” arXiv preprint

arXiv:1805.09501, 2018. 4.3.3

65

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Chapter 1 The Fundamental Problem
	1.1 Convolutional Networks and Beyond.
	1.2 Prior Art

	Chapter 2 The Transformation Network Paradigm
	2.1 The Transformation Network
	2.2 Modeling Transformations as Unitary Groups.
	2.3 Invariances in a TN node.
	2.4 Relaxing towards Non-group and Non-Unitary Structure in a TN node (Towards NPTNs).

	Chapter 3 Non-Parametric Transformation Networks
	3.1 Generalizing Convolution Architectures.
	3.2 The NPTN
	3.2.1 NPTN Layer Structure, Forward Pass and Training.
	3.2.2 Invariance Modelling in NPTNs is Data Driven and Highly Flexible.

	3.3 Empirical Evaluation of NPTNs
	3.3.1 Benchmarking against ConvNets on CIFAR-10
	3.3.2 Benchmarking against other approaches: ETH-80
	3.3.3 Learning Unknown Transformation Invariances from Data
	3.3.4 NPTNs with Capsule Networks

	3.4 Discussion on NPTNs

	Chapter 4 Permanent Random Connectome Networks
	4.1 Motivating Permanent Random Connectome Networks
	4.1.1 The Problem of Invoking Invariances.
	4.1.2 Relaxed Biological Motivation for Randomly Initialized Connectomes.

	4.2 Permanent Random Connectome NPTNs
	4.2.1 Invoking Invariance through Max Pooling.
	4.2.2 Connection to Deep Networks.
	4.2.3 Invoking Invariance through Channel Pooling in Deep Networks.
	4.2.4 Choosing the Support for Pooling at Random: Permanent Random Connectomes.
	4.2.5 The PRC-NPTN layer.

	4.3 Empirical Evaluation and Discussion
	4.3.1 Efficacy in Learning Arbitrary and Unknown Transformations Invariances from Data.
	4.3.2 Evaluation on the ETH-80 dataset
	4.3.3 Efficacy on CIFAR-10 Image Classification.
	4.3.4 Exploring parameter reduction due to PRC-NPTNs
	4.3.5 Pruning PRC-NPTNs for extreme parameter reduction

	Chapter 5 The Next Chapter
	Bibliography

