
Neural Architectures Towards

Invariant Representation Learning

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Dipan K. Pal

B.E., Electronics and Communications Engineering Department

Birla Institute of Technology, Mesra, India

M.S., Electrical and Computer Engineering Department

Carnegie Mellon University, Pittsburgh, USA

Carnegie Mellon UniversityPittsburgh, PA

December 2020

©Dipan K. Pal, 2020

All Rights Reserved

To my mom and dad, Preeti and Sudip Pal

Acknowledgments

First, I would like to thank my advisor and the chair of my doctoral committee

Prof. Marios Savvides for taking me into his lab and giving me the opportunity

to do this. Over the years, he and the lab in general have helped me realize the

importance of engineering and what kind of real impact such engineering can indeed

have. Storytelling is a great and useful art that few realize the importance of. It

was early in my career when he showed me how a good story helps have a more

effective connection with the listener. His style has certainly influenced mine over

these years. Perhaps, the biggest support that Prof. Marios provided over these

years was almost complete academic freedom. He let me pursue whatever problem I

wished to work on even though a few of these had no direct practical impact to the

lab. During times when I was struggling to get my work published, he reassured his

belief in me and my work. This patience and freedom let me hone one of the most

important skills as a researcher, how to pick a problem to work on. I am deeply in

debt to him for his guidance, support and the invaluable lessons I have learnt under

his wing over the years.

I would also like to thank my doctoral committee members, Prof. Vijayaku-

mar Bhagavatula, Prof. John M. Dolan and Dr. Saad Bedros for serving on my

committee and for their comments, guidance, and suggestions. I am very fortunate

to have such a distinguished thesis panel for which I am forever grateful.

I would like to also thank the wonderful lab mates I have had over the years

iv

all of whom have done great work and have taught me so many things over the

years. Shreyas Venugopalan, Utsav Prabhu, Sekhar Bhagavatula, Felix Xu, Keshav

Sheshadri, Raied Aljadany, Vishnu Boddeti, Khoa Luu, Thi Hoang Ngan (Nancy)

Le, Chenchen Zhu, Yutong Zheng, Ran Tao, Thanh Hai Phan, Uzair Ahmed and

Sreena Nallamothu have been an absolute pleasure to work with. I have deeply

enjoyed the conversations with Raied, Yutong, Felix, Uzair, Sreena, Utsav, Shreyas

and Sekhar which have spawned many ideas some of which were published.

I also thank the CyLab and CMU staff who have always helped us with any

problems and the innumerable last minute requests. Thank you Chelsea Mendenhall,

Tina Yankovich, Brittney Reyes and Nathan Snizaki for all your support. You all

made our life here much easier with such amazing support over the years.

One of the hardest things to do early on in a PhD, is picking a research

direction that you find most interesting. No other work has been more influential in

this regard than the work of Prof. Tomaso Poggio at MIT. It was a cold email back

in 2013 to which he graciously replied which started a long term commitment to the

principles of research which his work has embodied. He was very kind in allowing me

to attend the first CBMM Summer School back in 2014 which was an intense crash

course in systems, computational and cognitive neuroscience. My project for that

summer course on modelling random connections was the foundation upon which a

part of this thesis, PRCNs are based.

My time in Pittsburgh would have no way near as fun and full-filled had

it not been for the wonderful set of friends and support system that I was fortu-

nate to have. I want to thank the members of the ‘The Peace Band’, ‘The Club’,

‘Solway’ and ’Shady’. In particular, I want to thank Annesha Ganguly, Purvasha

Chakravarti, Abhishek Ravi, Aditya Menon, Vishal Pallikandi, Vaishnavi Kumar,

Sanika Kokate, Arnab Debnath, Vaishanavh Nagarajan, Saurabh Kadekodi, Sid-

dharth Singh, Ajay Pisat, Satwik Kottur, Deepanjana Gupta and Srujana Rao for

v

the wonderful memories.

I also want to include my sister Abhishikta Pal in this list who, as fate would

have it, graduated from CMU with a Masters in Urban Design. She has been just

an immense source of love and support for over the years. Seldom are people blessed

to have such talented and kind hearted siblings in life. One other person who has

been an absolute pillar in this journey is Annesha Ganguly. Her love, support,

banter, cheerfulness, vocal and culinary talents, along with devastating skill at one

particular board game has given life the color it deserves. I am eternally fortunate

to have them in my life.

Lastly, there are not many words to describe how privileged I am to have

Sudip and Preeti Pal as my parents. They are my original source of inspiration in

science. Every point in life was �lled with their encouragement, love and support.

Their tireless e�orts to have me educated, be a good citizen and contribute to the

world in anyway I can is the reason I am here today. This thesis is indeed dedicated

to them.

This work has been partly funded by US Naval Air Systems Command

(NAVAIR) grant no. N68335-16-C-0177, NAVMAR Applied Sciences Corporation

grant no. NASC-0040-CMU and National Institute of Justice grant no. 2013-IJ-

CX-K005.

Dipan K. Pal

Carnegie Mellon University

December 2020

vi

Abstract

The world is complex, ever changing yet structured. Given this complexity,

how can an organism living in such a world or even an arti�cial system distill this

information to perceive what is important towards its intention and what is not?

What theoretical principles underline such an ability? More interestingly, how do

these principles operate in the chaotic randomness and complexities of neural cir-

cuits in mammalian brains? These questions form the very heart of the study of

representation learning, and also point to perhaps the most interesting directions

the �eld must explore.

Indeed, one of the fundamental pursuits of machine learning and arti�cial

intelligence is learning to be invariant to nuisance transformations in the data. Most

prior work has focused on addressing these challenges through di�erent aspects

of the deep learning pipeline such as loss functions, data augmentation and more

recently self-supervision techniques. However, the core architecture or structure

of these networks has yet to be adapted to these challenges. In this thesis, we

explore how to learn and encode invariance towards nuisance transformations by

redesigning the convolution architecture itself leading to more powerful and e�cient

neural networks. We present two fundamental improvements to neural architecture

design through NPTNs (Non-Parametric Transformation Networks) and PRCNs

(Permanent Random Connectome Networks). These are designed to be drop-in

vii

replacements for the ubiquitous vanilla convolution layer.

NPTNs are a natural generalization of ConvNets and unlike almost all pre-

vious works in deep architectures, they make no assumption regarding the structure

of the invariances present in the data. PRCNs on the other hand, are initialized

with random connectomes (not just weights) which are a small subset of the con-

nections in a fully connected convolution layer. Importantly, these connections in

PRCNs once initialized remain permanent throughout training and testing. Perma-

nent random connectomes make these architectures loosely more biologically plausi-

ble than many other mainstream network architectures which require highly ordered

structures. They also o�er insights towards computational models of random con-

nectomes in the visual cortex. Empirically, we �nd that these randomly initialized

permanent connections have positive e�ects on generalization and parameter e�-

ciency. These ideas open a new dimension in deep network design providing more

versatile and e�ective learning. More importantly, they o�er initial answers to some

of the fundamental and motivating questions we highlighted above in representation

learning.

viii

Contents

Acknowledgments iv

Abstract vii

List of Figures xii

List of Tables xviii

Chapter 1 The Fundamental Problem 1

1.1 Convolutional Networks and Beyond. 1

1.2 Prior Art . 3

Chapter 2 The Transformation Network Paradigm 6

2.1 The Transformation Network . 6

2.2 Modeling Transformations as Unitary Groups. 8

2.3 Invariances in a TN node. 9

2.4 Relaxing towards Non-group and Non-Unitary Structure in a TN

node (Towards NPTNs). 10

Chapter 3 Non-Parametric Transformation Networks 12

3.1 Generalizing Convolution Architectures. 12

ix

3.2 The NPTN . 14

3.2.1 NPTN Layer Structure, Forward Pass and Training. 15

3.2.2 Invariance Modelling in NPTNs is Data Driven and Highly

Flexible. 17

3.3 Empirical Evaluation of NPTNs . 18

3.3.1 Benchmarking against ConvNets on CIFAR-10 18

3.3.2 Benchmarking against other approaches: ETH-80 19

3.3.3 Learning Unknown Transformation Invariances from Data . . 21

3.3.4 NPTNs with Capsule Networks 22

3.4 Discussion on NPTNs . 23

Chapter 4 Permanent Random Connectome Networks 25

4.1 Motivating Permanent Random Connectome Networks 25

4.1.1 The Problem of Invoking Invariances. 25

4.1.2 Relaxed Biological Motivation for Randomly Initialized Con-

nectomes. 28

4.2 Permanent Random Connectome NPTNs 29

4.2.1 Invoking Invariance through Max Pooling. 30

4.2.2 Connection to Deep Networks. 32

4.2.3 Invoking Invariance through Channel Pooling in Deep Networks. 34

4.2.4 Choosing the Support for Pooling at Random: Permanent

Random Connectomes. 34

4.2.5 The PRC-NPTN layer. 35

4.3 Empirical Evaluation and Discussion 38

4.3.1 E�cacy in Learning Arbitrary and Unknown Transformations

Invariances from Data. 40

x

4.3.2 Evaluation on the ETH-80 dataset 42

4.3.3 E�cacy on CIFAR-10 Image Classi�cation. 45

4.3.4 Exploring parameter reduction due to PRC-NPTNs 48

4.3.5 Pruning PRC-NPTNs for extreme parameter reduction . . . 51

Chapter 5 The Next Chapter 56

Bibliography 57

xi

List of Figures

2.1 A single NPTN node: (a) Operation performed by a single Transfor-

mation Network (TN) node (single channel input and single channel

output, Non-Parametric Transformation Networks are a kind of TN).

TNs (and NPTNs) are a generalization of ConvNets towards learning

general invariances and symmetries. The node has two main com-

ponents (i) Dot product implemented as Convolution due to weight

sharing and (ii) Transformation Pooling. The dot-product between

the input patch (x) and a set of jGj number of �lters gw (green) is

computed (this results in convolution when implemented with spa-

tially replicated nodes). Here jGj = 6 (di�erent shades of green indi-

cate transformed templates). g indicates the transformation applied

to the template or �lter w. The resultant six output scalars (red)

are then max-pooled over to produce the �nal output s (black). The

pooling operation here is not spatially (as in vanilla ConvNets) but

rather across thejGj channels which encode non-parametric transfor-

mations. The output s is now invariant to the transformation encoded

by the set of �lters G. Each plane indicates a single feature map/�lter. 7

xii

3.1 Types of Invariances in Deep Networks (b) Most previous works in

deep learning have focused on invariances to transformations that are

parametric in nature and �xed. SymNets ([1]) and NPTNs to the best

of our knowledge are the only architectures tolearn invariances from

data towards transformations that are not modelled by any expression

in the network itself, i.e. the symmetries that are captured are non-

parametric in nature. 13

3.2 Comparison between (a) a standard Convolution layer and (b) a

NPTN layer with jGj = 3. Each layer depicted has 2 input (shades of

grey) and 2 output channels (shades of blue). The light grey rectan-

gle encloses a single TN node (see Fig. 2.1) The convolution layer has

therefore, 2� 2 = 4 �lters, whereas the NPTN layer has 2� 2� 3 = 12

�lters. The di�erent shades of �lters in the NPTN layer denote trans-

formed versions of the same �lter (same color) which are max pooled

over (support denoted by inverted curly bracket). The + opera-

tion denotes channel addition. In our experiments, we adjust the

input/output channels of the NPTN layer to have the same number

of parameters as the ConvNet baselines. (c) Shows how ConvNets

and NPTNs are categorized under the TN framework. 16

3.3 Test losses on CIFAR-10 for the two layered network. Each network

listed has the same number of �lters. 18

xiii

3.4 Test errors on MNIST for Capsule Nets augmented with NPTNs.

(128) denotes a Capsule Network with a vanilla ConvNet. Other

labels are NPTNs with (channels,jGj). The number of �lters from left

to right is f 4224; 4160; 4074; 4128g. NPTNs signi�cantly outperform

ConvNets in Capsule Nets with fewer �lters. 22

4.1 Left: Operations comprising the PRC-NPTN layer. The number of

input and output channels in the Conv layer is (inch) and (inch�j Gj)

respectively. G is the number of �lters (linear transformations learnt)

for each input channel. The key operation proposed is the Permanent

Random Channel shu�ing operation with a �xed index mapping for

every forward pass. This indexing or connectome is initialized ran-

domly during network initialization. Center: Architecture of the

PRC-NPTN layer. Each input channel is convolved with a number of

�lters (parameterized by G). Each of the resultant activation maps is

connected to a one of the channel max pooling units randomly (initial-

ized once, �xed during training and testing). Each channel pooling

unit pools over a �xed random support of a size parameterized by

CMP. Right: Explicit invariances enforced within deep networks in

prior art are mostly parametric in nature. The important problem of

learning non-parametric invariances from data has not received a lot

of attention. 26

xiv

4.2 (a) Homogeneous Structured Pooling pools across the entire

range of transformations of thesame kind leading to feature vectors

invariant only to that particular transformations. Here, two distinct

feature vectors are invariant to transformation T1 and T2 indepen-

dently. (b) Heterogeneous Random Support Pooling pools

across randomly selected ranges of multiple transformationssimulta-

neously. The pooling supports are de�ned during initialization and

remain �xed during training and testing. This results in a single

feature vector that is invariant to multiple transformations simulta-

neously. Here, each colored box de�nes the support of the pooling

and pools across features only inside the boxed region leading to one

single feature. 33

4.3 Vectorized Random Support Pooling extends this idea to con-

volutional networks, where one realizes that the random support pool-

ing on the feature grid (on the left) is equivalent to random support

pooling of the vectorized grid. Each element of the vector (on the

right) now represents a singlechannel in a convolutional network and

hence random support pooling in PRC-NPTNs occur across channels. 33

4.4 Only Rotation Transformation Results: Test error statistics

with mean and standard deviation on MNIST with progressively ex-

treme random rotations . ConvNet FC denotes the addition of a

2-layered pooling 1� 1 pooling network after every layer. Note that

for this experiment, CMP= jGj. Permanent Random Connectomes

help with achieving better generalization despite increased nuisance

transformations. 38

xv

4.5 Only Translation Transformation Results: Test error statis-

tics with mean and standard deviation on MNIST with progressively

extreme random pixel translations . ConvNet FC denotes the ad-

dition of a 2-layered pooling 1� 1 pooling network after every layer.

Note that for this experiment, CMP= jGj. Permanent Random Con-

nectomes help with achieving better generalization despite increased

nuisance transformations. 39

4.6 Computational e�ciency improvements of our CUDA implementa-

tions. 40

4.7 Simultaneous Transformation Results: Test error statistics

with mean and standard deviation on MNIST with progressively ex-

treme transformations with random rotations and random pixel

shifts simultaneously . For PRC-NPTN and NPTN the brackets

indicate the number of channels in the layer 1 andG. Note that for

this experiment, CMP= jGj. 41

4.8 Sample images from the ETH-80 database. The dataset contains

80 objects belonging to 8 di�erent classes. Each object has images

from di�erent viewpoints on a hemisphere resulting in 3D pose and

viewpoint variation for each object. 43

4.9 PRC-NPTNs allow for signi�cantly smaller networks with

similar performance. PRC-NPTNs provide a factor between6.6�

to 9.2 � worth of reduction in parameters while su�ering a test

accuracy degradation only between 3:08% to 4:82%. Whereas, using

the same number of parameters, PRC-NPTN achieves 82:84% test

accuracy versus the baseline 80:67%. 48

xvi

4.10 PRC-NPTN version of ResNets allow for signi�cantly smaller

networks with similar performance. PRC-NPTNs provide a fac-

tor between 1.93� to 6.1 � worth of reduction in parameters

while su�ering a test accuracy degradation only between 1% to 2:2%. 49

4.11 PRC-NPTNs allow for signi�cantly more e�ciently networks

with similar performance. Both for the four layered network and

ResNet, the PRC-NPTN versions provide signi�cant improvements

in terms of FLOP reduction. 50

4.12 Varying CMP: PRC-NPTN pruning for di�erent amounts.

Di�erent models have varying CMP PRC-NPTN along with

pruning allows control over focus on performance at lower or higher

parameter regimes. Each curve is a separate model trained for a

di�erent value of CMP. The yellow PRC-NPTN curve shows better

performance at high parameter regime for low CMP. On the other

hand, the dark blue PRC-NPTN curve shows better performance at

low parameter regime using high CMP. 53

4.13 Varying G: PRC-NPTN pruning for di�erent amounts. Dif-

ferent models have varying G PRC-NPTN along with pruning

allows control over focus on performance at lower or higher param-

eter regimes. Each curve is a separate model trained for a di�erent

value of G. The yellow PRC-NPTN curve shows better performance

at low parameter regime for low G. On the other hand, the dark

blue PRC-NPTN curve shows better performance at high parameter

regime using highG. 54

xvii

List of Tables

3.1 Test accuracy on ETH-80. All models including NPTNs and the

ConvNet had roughly the same number of parameters (about 1.4M).

Results for models along with architecture details other than NPTN

are cited as is from the same study as ConvNet. 20

3.2 Test error on progressively transformed MNIST with (a) random ro-

tations and (b) random pixel shifts. NPTNs can learn invariances to

arbitrary transformations from the data itself without any a priori

knowledge. All models have same number of parameters. 21

xviii

4.1 Architectures tested on ETH-80. C - convolution layer, FC -

fully connected layer, PRC - PRC-NPTN layer, NPTN - NPTN layer,

GAP - global average pooling layer. Every Conv, NPTN and PRC-

NPTN layer was followed by a spatial pooling layer of kernel size 2

except the last layer before the GAP. The 1� 1 versions of these

architectures have a 1� conv layer after every 3� 3 layer except

the �rst C(12) layer. ConvNet B was designed to be similar to the

architecture explored in Khasanovaet.al., 2017 however with more

layers. ConvNet C was designed to be more aligned with modern

architecture choices such as global average pooling followed by just

one FC layer. 44

4.2 Test accuracy on ETH-80 Protocol 1. � indicates the result

was obtained from the corresponding paper (Khasanovaet.al., 2017

and Pal and Savvides, 2019), and is not on the split used for our

experiments. For NPTN is number in the bracket denotes jGj, for

PRC-NPTN the numbers denote jGj and CMP respectively. 45

4.3 E�cacy on CIFAR-10: Test error statistics on CIFAR-10 with

mean and standard deviation. ++ indicates AutoAugment testing.

Each DenseNet and its corresponding PRC-NPTN variant has the

same number of parameters (number in bracket determines CMP).

jGj = 12 for PRC-NPTN and growth rate was kept at 12 for DenseNet-

Conv. (w/o Random) indicates no randomization in the connectomes

constructed (as an ablation study). The speed and memory improve-

ments are multiplicative improvement factors of our CUDA kernel

implementation compared to baseline optimized PyTorch code. . . . 47

xix

4.4 PRC-NPTNs allow for signi�cantly smaller networks with

similar performance. PRC-NPTN versions of VGG 19 and DenseNet

allow for about a 27% decrease in the number of parameters while

su�ering only a marginal decrease in accuracy in the case of VGG 19. 51

xx

Chapter 1

The Fundamental Problem

One of the central problems of machine learning, has been supervised classi�cation.

A core challenge towards these problems is the encoding or learning of invariances

and symmetries that exist in the training data. Indeed, methods which incorporate

some known invariances or promote learning of more powerful invariances for a

learning problem perform better in the target task given a certain amount of data.

A number of ways exist to achieve this. One can present transformed versions of the

training data as in [2], minimize auxiliary objectives promoting invariance during

training as in [3] or pool over transformed versions of the representation itself as in

[4, 5, 6].

1.1 Convolutional Networks and Beyond.

Towards this goal, ideas proposed in [7] with the introduction of convolutional neural

networks have proved to be very useful. Weight sharing implemented as convolutions

followed by pooling resulted in the hard encoding of translation invariances (and

symmetries) in the network. This made it one of the �rst applications of modelling

1

invariance through a network's architecture itself. Such a mechanism resulted in

greater regularization in the form of a structural or inductive bias in the network.

With this motivation in mind, it is almost natural to ask whether networks which

model more complicated invariances and symmetries perform better? Investigating

architectures which invoke invariances not implicitly through the model's functional

map but explicitly through an architectural property seems important.

New Dimensions in Network Architecture. Over the years, deep

convolutional networks (ConvNets) have enjoyed a wide array of improvements in

architecture. It was observed early on that a larger number of �lters (width) in Con-

vNets led to improved performance, though with diminishing returns. [8, 9] present

another signi�cant milestone with the development and maturity of residual connec-

tions and dense skip connections. Though there have been more advances in network

architecture, many of the improvements have been derivatives of these two ideas (for

instance [10, 11, 12]). Recently however, [13] introduced Capsule Nets which pre-

sented another potentially fundamental idea of encoding properties of an entity or

an object in an activity vector rather than a scalar. With the goal of designing more

powerful networks, ideas presented in this thesis for modellinggeneral invariances

in the same framework as ConvNets, open up a new and potentially key dimension

for architecture development. In this thesis, we explore one such architecture class,

called Transformation Networks (TN) which is a generalization of ConvNets. Addi-

tionally, we introduce a new type of TN using which a new class of networks can be

built called Non-Parametric Transformation Networks (NPTNs). Finally, we build

upon NPTNs to introduce PRCNs or Permanent Random Connectome Networks.

2

1.2 Prior Art

Although past applications of incorporating invariances were more speci�c and rel-

atively narrow, development of such methods o�ers a better understanding of the

importance of the problem. Though in this work we focus on deep architectures, it

is important to note a number of works on modi�cations of Markov Random Fields

and Restricted Boltzman Machines to achieve rotational invariance [14, 15].

Incorporating known invariances using deep networks. Convolu-

tional architectures have seen many e�orts to produce rotation invariant represen-

tations. [16] and [17] rotate the input itself before feeding it into stacks of CNNs

and generating rotation invariant representations through gradual pooling or pa-

rameter sharing. [18, 19, 20] rotate the convolution �lters (a cheaper albeit still

expensive operation) instead of transforming the input followed by pooling. A simi-

lar approach was explored for scale by [21]. An interesting direction of research was

explored by [22] where the rotation, scale and translation invariant �lters were �xed

and non-trainable. [23, 24] presented methods to incorporate parametric invariances

using groups and warped convolutions. The transformations in [24, 25] are known

apriori and the sample grids and steerable �lters are generated o�ine. This limits

the capability to learn arbitrary and adaptive transformations. NPTNs need no

such apriori knowledge apart that encoded in its architecture, can learn arbitrary

non-parametric transformations and �nally are simpler and perhaps more elegant

in implementation.

Learning unknown invariances from data. In most real world prob-

lems, nuisance transformations present in data are unknown or too complicated to

be parameterized by some function. [26] proposed a theory of group invariances

called I-theory and explored its connection to general classi�cation problems and

3

deep networks. Based o� the core idea of measuring moments of a group invariant

distribution, multiple works had demonstrated e�cacy of the ideas in more chal-

lenging real-world problems such as face recognition, though not in a neural network

setting. See [4, 5, 6].

Learning unknown invariances from data through networks. Very

few works have explored incorporating unknown invariances into deep networks. To

the best of our knowledge, SymNets introduced in [1] was only one other previous

study proposed deep networks whichlearn more general transformations. They were

introduced as one of the �rst to model general invariances with back propagation.

They utilize kernel based interpolation to tie weights enable them to model general

symmetries. Nonetheless, the approach is complicated and di�cult to scale. [27]

provide su�cient conditions to enforce the learned representation to have symme-

tries learned from data. [28] modelled local invariances using pooling over sparse

coe�cients of a dictionary of basis functions.

[29] achieved local invariance through complex weight sharing. Optimization

was carried out through Topographic ICA and only carried out layer wise for deep

networks. A separate approach towards modelling invariances was also developed

where a normalizing transformation is applied to every input independently. This

approach was applied to transforming auto encoders [30].

Prior Art Learning Invariances from Data or using Random Con-

nectomes. There have been many seminal works that have indeed explored the role

of temporary random connections in deep networks such as DropOut [31], DropCon-

nect [32] and Stochastic Pooling [33]. However, unlike the proposed approach, the

connections in these networks randomly change atevery forward pass, hence are

temporary. More recently, random permanent connections were explored for large

4

scale architectures [34]. It is important however to note that the basic unit of compu-

tation, the convolutional layer, remained unchanged. Our study explores permanent

random connectomeswithin the convolutional layer itself, and explores how it can

learn non-parametric invariances to multiple transformations simultaneously in a

simple manner.

5

Chapter 2

The Transformation Network

Paradigm

2.1 The Transformation Network

A Transformation Network (TN) is a feed forward network with its architecture

designed to enforce invariance to some class of transformations through pooling. At

the core of the framework is the TN node. A TN network consists of multiple such

nodes stacked in layers. A single TN node is analogous to a single convolution layer

with single channel input and single channel output.

Each TN node (single input channel and single output channel) internally

consists of two operations 1)(convolution) the convolution operation with a bank of

�lters and 2) (transformation pooling) a max pooling operationacross the set of the

resultant convolution feature maps from the single input channel. Note the pooling

is not spatial but rather across channels originating from thesame input channel

(this is di�erent from MaxOut [35] which pools over all input channels). Fig. 2.1

6

Figure 2.1: A single NPTN node: (a) Operation performed by a single Transfor-
mation Network (TN) node (single channel input and single channel output, Non-
Parametric Transformation Networks are a kind of TN). TNs (and NPTNs) are a
generalization of ConvNets towards learning general invariances and symmetries.
The node has two main components (i) Dot product implemented as Convolution
due to weight sharing and (ii) Transformation Pooling. The dot-product between
the input patch (x) and a set of jGj number of �lters gw (green) is computed (this
results in convolution when implemented with spatially replicated nodes). Here
jGj = 6 (di�erent shades of green indicate transformed templates). g indicates the
transformation applied to the template or �lter w. The resultant six output scalars
(red) are then max-pooled over to produce the �nal output s (black). The pooling
operation here is not spatially (as in vanilla ConvNets) but rather across the jGj
channels which encode non-parametric transformations. The outputs is now invari-
ant to the transformation encoded by the set of �lters G. Each plane indicates a
single feature map/�lter.

illustrates the operation of single TN node with a single input/output channel for

a single patch. The single channel illustrated in the �gure takes in a single input

feature map and convolves it with a bank of jGj �lters. Here jGj is the cardinality

(or size) of the set of transformations that the TN node is invariant towards, with

G being the actual set itself. Next, the transformation max pooling operation max

pools across thejGj feature values to obtain a single TN activation value. When this

node is replicated spatially, standard convolution layers can be utilized. Formally,

a TN node denoted by � acting on a 2D image patch vectorized asx 2 Rd can be

de�ned as follows.

7

�(x) = max
g2 G

(hx; gwi) (2.1)

Here, h i denotes a dot product and G is formally de�ned as a unitary group,

i.e. a �nite set obeying group axioms with each element being unitary. w 2 Rd is

the weight or �lter, and gw is the group element g acting on w1. Therefore, the

convolution kernel weights of a TN node are simply the transformed versions ofw as

transformed by the unitary group G. The TN node has to, only in theory, transform

weight template w according to G to generate the rest of the �lters to be pooled

over during the transformation pooling stage. In practice however, these are simply

stored as a set of templates or �lters which only implicitly encodeG through some

constraints. For instance, vanilla ConvNets model the groupG to be the translation

group by enforcing it through the convolution operation. Thus, a ConvNet can be

exactly modelled by the TN framework whenG is the translation group. Gradient

descent updates the �lter w for a single node which immediately speci�es the other

�lters in that node since they are the translated versions of w.

2.2 Modeling Transformations as Unitary Groups.

The use of unitary groups to model transformations and invariances has emerged

as a prominent theoretical tool [26, 6]. Group structure allows the computing of

invariant objects such as group integrals. However, the signi�cance of the unitary

group lies in the fact that the vanilla ConvNet is invariant to translations, which

is the simplest unitary group. Any framework that models invariance using the

1We use this shorter notation to reduce clutter.

8

unitary group can be directly generalized to more complex groups such as rotations

(rotation is an unitary transformation). This allows for seamless integration of the

vanilla ConvNet into the theoretical framework and provides clear theoretical and

practical connections to the same. Unitary groups in TNs allow them to exactly

model ConvNets while generalizing to more complex networks invoking more com-

plex invariances. The unitary group condition thus is only a useful theoretical tool,

however should not be considered as a practical constraint.

2.3 Invariances in a TN node.

Invariance in the TN node arises directly due to the symmetry of the unitary group

structure of the �lters. The max operation simply measures the in�nite moment of

an invariant distribution which invokes invariance (see [26]). We demonstrate this

in the form of the following simple result2.

Lemma 2.3.1. (Invariance Property) Given vectors x; w 2 Rd, a unitary group G

and �(x) = max g2 G(hx; gwi), for any �xed g0 2 G, then �(x) = �(g0x).

Proof. Consider the distribution of elements of the setSg0 = fhg0x; gwig over all

g 2 G and for any particular g0 2 G. This 1-D distribution characterizes the vector

g0x through the projections onto gw. Due to unitarity of G, and that g0 2 G, we have

hg0x; gwi = hx; g0� 1gwi . Now, sinceG is a group, we have for anyg0 2 G, g0� 1g 2 G

due to the closure property. The set of elements inSg0 contains all elements ofG and

hence must also containg0� 1g. This implies that the action of g0� 1 on the group G

results in just a reordering of the group, leaving the distribution unchanged. Thus,

the set Sg0 is unchanged. More speci�cally, Sg0 = fhg0x; gwig = fhx; gwig = Se,

where e is the identity element of G. Thus, the two sets invoke the exact same
2Proof in the supplementary.

9

distribution, which results in their moments being the same. This includes the

in�nite moment, which implies �(g0x) = max g2 G Sg0 = max g2 G Se = �(x).

Lemma 2.3.1 shows that forany input x (including test inputs), the node

output is invariant to the transformation group G. Note that invariance to test

samples arises from two components. First, the group structure ofG provides exact

invariance and second, the unitary condition allows for the invariance properties to

be extended to unseen test samples. This is interesting, since one does not need to

observe any transformed version of say a test samplex during training which reduces

sample complexity as explored by [26]. Invariance is invoked for any arbitrary input

x during test time, thereby demonstrating good generalization properties.

2.4 Relaxing towards Non-group and Non-Unitary Struc-

ture in a TN node (Towards NPTNs).

Lemma 2.3.1 guarantees exact invariance perfectly for vanilla ConvNets and TNs

which model G as having a group-structure and the unitary condition. For methods

that do not enforce these conditions (unitary group conditions) in theory, no test

generalization claim can be made. However, a number of studies have observed

approximate albeit su�cient invariances in practice under this setting [26, 27, 5, 6, 4].

The main motive for modelling transformations as unitary groups was to provide

a theoretical connection to ConvNets and other methods that enforce other kinds

of unitary invariance such as rotation invariance [20, 19]. However, real-world data

experiences a large array of transformations acting, which certainly lie outside the

span of unitary transformations. Keeping this in mind, constraining the network to

model only unitary transformations limits their ability to learn these more general

10

invariances which are di�cult to characterize.

In the following chapter, we introduce a new kind of TN called the NPTN

which is free from the constraints and limitations of unitary modelling, thereby

being more expressive. Indeed, in our experiments, we observe that the NPTN ar-

chitectures are able to perform better by learning invariance (signi�ed by better test

generalization) towards both 1) group structured, unitary and parametric transfor-

mations such as translations and rotations, and also towards 2) general non-group

structured and non-parametric transformations (as in general object classi�cation)

which are di�cult to characterize. Note that Lemma 2.3.1 only serve as a result for

ConvNets and TNs, they do not characterize the invariance properties on NPTNs

and general non-group non-unitary transformation. Investigation of such proper-

ties of NPTNs under the general setting is arduous and is outside the scope of this

thesis. Further, note that developing TNs and relating the unitary condition is not

necessary for the development or motivation of NPTNs. TNs however provide a

more elegant story and more importantly clarify the connection to vanilla ConvNets

and helps to put our contribution in perspective.

11

Chapter 3

Non-Parametric Transformation

Networks

3.1 Generalizing Convolution Architectures.

In this chapter, we explore one architecture class, called Transformation Networks

(TN) which is a generalization of ConvNets. Additionally, we introduce a new type

of TN using which a new class of networks can be built called Non-Parametric Trans-

formation Networks (NPTNs). NPTNs networks have the ability to learn invariances

to general transformations that areobservedin the data which are non-parametric in

nature (di�cult to express mathematically). They can be easily implemented using

standard o�-the-shelf deep learning frameworks and libraries. Further, they can be

optimized using vanilla gradient descent methods such as SGD. Unlike other meth-

ods that enforce additional invariances in convolutional architectures [18, 19, 20],

NPTNs do not need to transform the input, activation maps or the �lters at any

stage of the learning/testing process. They enjoy bene�ts of a standard convolu-

12

Figure 3.1: Types of Invariances in Deep Networks (b) Most previous works in
deep learning have focused on invariances to transformations that are parametric in
nature and �xed. SymNets ([1]) and NPTNs to the best of our knowledge are the
only architectures to learn invariances from data towards transformations that are
not modelled by any expression in the network itself,i.e. the symmetries that are
captured are non-parametric in nature.

tional architecture such as speed and memory e�ciency while being more powerful

in modelling invariances and being elegant in their operation. When forced to ignore

any learnable transformation invariances in data, they gracefully reduce to vanilla

ConvNets in theory and practice. However, when allowed to do so, they outperform

ConvNets by capturing more general invariances.

Some properties of NPTNs The architecture itself of an NPTN allows it

to be able to learn powerful invariances from data provided the transformations are

observable in data (a single node is illustrated in Fig. 2.1). NPTNs do not enforce

any invariance that is not observed in the data (although translation invariance

can still be enforced through spatial pooling). Learning invariances from data is

di�erent and more powerful than enforcing known and speci�c invariances as is more

common in literature (see Fig. 3.1). Networks which enforce prede�ned symmetries

(including vanilla ConvNets) force the same invariances at all layers which is a

strong prior. More complex invariances are left for the network to learn using

the implicit functional map as opposed to the explicit architecture. The proposed

13

NPTNs have the ability to learn di�erent and independent invariances for di�erent

layers and in fact for di�erent channel paths themselves. Vanilla ConvNets enforce

translation invariance through the convolution operation followed by a aggregation

operation (either pooling or a second convolution layer) and only need to learn the

�lter instantiation . However, an NPTN node needs to learn 1) the instantiation of

the �lter and 2) the transformation that the particular node is invariant towards

encoded as aset of �lters. Each node learns these entities independently of each

other which allows for a more exible invariance model as opposed to architectures

which replicate invariances across the network.

3.2 The NPTN

A Non-Parametric Transformation Network (NPTN) is a kind of TN that lacks any

constraints on set of weights/�lters w for any particular node. Here the set of �lters

G has two relaxations 1) need not have any group structure and 2) need not model

any parametric and/or unitary transformations such as the translations or rotations.

The term G in an NPTN represents simply a set of arbitrary �lters modelling

arbitrary transformations which are (potentially) non-parametric. One might think

of the analogy from statistics where the Gaussian distribution is parametric, however

for many real-world distributions a non-parametric tool such as a histogram is more

appropriate. Note that however, there is no constraint that prevents a NPTN from

learning translation and rotation invariance. In fact, in one of our experiments this is

exactly the requirement. Under the two relaxations, the invariance invoked to these

arbitrary transformations in an NPTN would only be approximate. Nonetheless

and consistent with previous work, we �nd in our experiments that despite the

approximation, there is much to be gained overall and the invariance invoked su�ces

14

in practice as also found by [4, 5].

In an NPTN, both the entities (w; G) are learned,i.e. a NPTN node is tasked

with learning both the �lter instantiation w, and the set of transformations G to

which the node is to be invariant towards. Nonetheless and rather importantly, no

generation of transformed �lters is necessary during any forward pass of a NPTN

layer since the setG of transformed �lters is always maintained and updated by

gradient descent. This signi�cantly reduces computational complexity compared to

some previous works [18, 19]. LearningG from data is in sharp contrast with the

vanilla convolutional node in which only the �lter instantiation w is learned and

where G is hard coded to be the translation group which is a parametric transfor-

mation (and also arguably the most elementary). Thus, ConvNets are a kind of

Parametric Transformation Networks (PTNs) (see Fig. 3.2(c)). It is also important

to note that however, setting jGj = 1 and incorporating spatial pooling, a NPTN is

reduced to a vanilla ConvNet in practice. Compared to other approaches to learn

and model general invariances such as SymNets [1], the NPTN architecture is ele-

gantly simple and also a close generalization of ConvNets. Further, they can replace

any convolution layer in any architecture making them versatile. We now describe

the NPTN layer in more detail and discuss its characteristics.

3.2.1 NPTN Layer Structure, Forward Pass and Training.

Fig. 3.2 illustrates a NPTN layer and compares it to a vanilla ConvNet layer. The

NPTN layer shown has 2 input channels, 2 output channels andjGj = 3. For a

NPTN layer with M input channels and N output channels, there would beMN

NPTN nodes each identical to the one shown in Fig. 2.1. There arejGj �lters

learned for each of theMN nodes, which each are convolved over the image similar

15

(a) Convolution layer (b) NPTN layer (c) Relation between ConvNets and
NPTNs

Figure 3.2: Comparison between (a) a standard Convolution layer and (b) a NPTN
layer with jGj = 3. Each layer depicted has 2 input (shades of grey) and 2 output
channels (shades of blue). The light grey rectangle encloses a single TN node (see
Fig. 2.1) The convolution layer has therefore, 2� 2 = 4 �lters, whereas the NPTN
layer has 2� 2 � 3 = 12 �lters. The di�erent shades of �lters in the NPTN layer
denote transformed versions of the same �lter (same color) which are max pooled
over (support denoted by inverted curly bracket). The + operation denotes channel
addition. In our experiments, we adjust the input/output channels of the NPTN
layer to have the same number of parameters as the ConvNet baselines. (c) Shows
how ConvNets and NPTNs are categorized under the TN framework.

to a vanilla ConvNet. Consider Fig. 3.2(b), once the input is convolved with the

M � j Gj �lters, the M sets each withjGj feature maps each are max pooled across

the jGj feature maps. More speci�cally, each ofjGj feature maps from a single input

channel results in one intermediate feature map after max pooling (across thejGj

channels). This is the primary step that invokes invariances to transformations.

After this operation there are MN intermediate feature maps which are transfor-

mation invariant. Now, the sum (alternatively the mean) of these M feature maps

results in one output feature map or channel. This is repeated for each of theN

output channels1. Note that there is no operation in this forward pass where the

input or the �lters need to be transformed on-the-y, which makes it NPTNs com-

putationally e�cient compared to some previous models [16, 17, 18, 19, 20]. In fact,

the computation complexity for NPTNs only increases with the order jGj relative

1We provide implementation details of NPTNs using standard libraries in the supplementary.

16

to a vanilla convolution layer. This is countered in our experiments by decreasing

M and N , primarily to preserve the number of parameters. The NPTN layer can

be trained using standard back-propagation. Back-propagation updates each of the

jGj �lters of the NPTN independently depending on which of the jGj �lters is the

`winner' during the channel max pooling operation. Note again that this operation

is very di�erent from MaxOut which pools over inputs from all channels, whereas

here each max operation pools overjGj channels only from thesame input channel2.

Since the �lters are not constrained to form any group, we do not expect to see any

regular transformations being observed in the �lters (for instance, rotated �lters

for rotation invariance). This might seem as a slight hindrance to interpretibility,

nonetheless in our experiments, we �nd NPTNs perform well in speci�c applications

where learning invariance from the data is necessary.

3.2.2 Invariance Modelling in NPTNs is Data Driven and Highly

Flexible.

It is important to note that though the architecture of NPTNs allows it to learn

invariances, it doesnot in fact enforce any particular invariance by itself. NPTNs can

only learn invariances to transformations that are observed in data, and thereby are

even more bene�ted from data augmentation and natural variation. This is a critical

di�erence between NPTNs and other works which do enforce speci�c invariances

through design (see under Parametric Invariance in Fig. 3.1). Another important

and powerful property that emerges from having independent �lter sets for each

of the NPTN nodes in an entire network, is that each individual node can model

invariance to a completely di�erent transformation. Concretely, a single NPTN layer

with M input channels andN output channels potentially can model MN di�erent
2We discuss deviation from MaxOut in more detail in the supplementary.

17

Figure 3.3: Test losses on CIFAR-10 for the two layered network. Each network
listed has the same number of �lters.

kinds of invariances. This is again in sharp contrast to ConvNets and other previous

works such as [18, 19, 20] where each layer and in fact each of the channel paths

model exact same invariance, either translation, rotation or scale. NPTNs thus

o�ers immense exibility in invariance modelling.

3.3 Empirical Evaluation of NPTNs

3.3.1 Benchmarking against ConvNets on CIFAR-10

In our �rst set of experiments, we benchmark and characterize the behavior of

NPTNs against the standard ConvNets augmented with Batch Normalization [36].

The goal of this set of experiments is to observe whether learning non-parametric

transformation invariance from complex visual data itself helps with object classi-

18

�cation. For this experiment, we utilize the CIFAR-10 dataset 3. The networks we

experiment with are not designed to compete with state-of-the-arts on this data

but rather throw light into the behavior of NPTNs. We therefore utilize a small

network, speci�cally a two layered network, for these experiments. Each layer block

of the baseline ConvNets consist of the convolution layer, followed by batch normal-

ization and the non-linearity (PReLU) and �nally by a 2 by 2 spatial max pooling

layer. Each corresponding NPTN network replaces only the convolution layer with

the NPTN layer. Thus, NPTN is allowed to model non-parametric invariance in

addition to the typically enforced translation invariance due to spatial max pooling.

The two layered network baseline ConvNet has channels [3, 48, 16] with a total of

3 � 48 + 48 � 16 = 912 �lters. The NPTN variants in this experiment keep the

total number of �lters constant with 48 channels with jGj = 1 denoted by (48 1), 24

channels with jGj = 2 denoted by (24 2), and so on up until 9 channels withjGj = 5

(9 5). Fig. 3.3 shows the testing losses. Each network experimented with has the

same number of parameters. We �nd all NPTN variants which learn a non-trivial

set of transformations (jGj > 1) outperform the ConvNet baseline signi�cantly, with

NPTN jGj = 3 performing the best.

3.3.2 Benchmarking against other approaches: ETH-80

We now benchmark NPTNs against other approaches learning invariances on the

ETH-80 dataset [37]. As our baseline, we follow the experimental setup and the

speci�cations of the models described in [38]. Note that for this experiment, our

goal is not to attain state-of-the-art results, but rather benchmark against other

related methods under a comparable setting. The dataset has 80 objects belonging

3With standard data augmentation of random cropping after a 4 pixel pad, and random hori-
zontal ipping. Training was for 300 epochs with the learning rate being 0.1 and decreased at epoch
150, and 225 by a factor of 10.

19

Method Accuracy (%)

ConvNet 80.1
STN 45.1
DeepScat 87.3
HarmNet 94.0
TIGradNet 95.1
NPTN (Ours) 96.2

Table 3.1: Test accuracy on ETH-80. All models including NPTNs and the ConvNet
had roughly the same number of parameters (about 1.4M). Results for models along
with architecture details other than NPTN are cited as is from the same study as
ConvNet.

to 8 classes. Each object has 41 images taken from a grid of di�erent viewpoints

on a hemisphere. Following [38], we resize the images to 50� 50 and train on 2,300

images and test on the rest. The isometric transformations in the dataset present a

good challenge for approaches to invoke invariance in a real-world setting. For this

experiment, we compare against standard ConvNets, Spatial Transformer Networks

[39], DeepScat [40], HarmNet [41] and TIGradNet [38]. The NPTN architecture was

chosen to by replacing the convolution layers in the ConvNet architecture in [38]

with NPTN layers while setting jGj = 3 and reducing the number of channels to pre-

serve the number of parameters. All models in this experiment (including NPTNs)

have about 1.4M parameters. We utilized the model architectures and results from

ConvNet [38], STN [39], DeepScat [40], HarmNet [41], TIGradNet [38]. Table 3.1

presents the test accuracy on ETH-80. We �nd that NPTN outperforms these other

high-performing algorithms on this task with an accuracy of 96.2 %. Thus, NPTNs

despite having much simpler architecture and the same number of parameters, is

able to perform well in a task where the primary nuisance transformation is due to

varying 3D pose of the objects.

20

Rotations 0� 30� 60� 90�

ConvNet (36) 0.75 1.16 2.05 3.32
NPTN (36, 1) 0.68 1.27 2.01 3.36
NPTN (18, 2) 0.66 1.09) 1.72 2.88
NPTN (12, 3) 0.63 1.08 1.71 2.76
NPTN (9, 4) 0.66 1.17 1.83 2.94

Translations 0 pix 4 pix 8 pix 12 pix
ConvNet (36) 0.62 0.95 1.97 7.00
NPTN (36, 1) 0.62 0.88 1.84 7.22
NPTN (18, 2) 0.74 0.75 1.70 6.26
NPTN (12, 3) 0.66 0.70 1.58 6.20
NPTN (9, 4) 0.64 0.76 1.59 6.37

Table 3.2: Test error on progressively transformed MNIST with (a) random rotations
and (b) random pixel shifts. NPTNs can learn invariances to arbitrary transforma-
tions from the data itself without any a priori knowledge. All models have same
number of parameters.

3.3.3 Learning Unknown Transformation Invariances from Data

We now demonstrate the ability of NPTN networks to learn invariances directly

from data without any apriori knowledge. For this experiment, we augment MNIST

with extreme a) random rotations b) random translations, both in training and test-

ing data thereby increasing the complexity of the learning problem itself. For each

sample, a random instantiation of the transformation was applied. For rotation, the

angular range was increased, whereas for translations it was the pixel shift range.

Table 3.2 presents these results. All networks in the table are two layered and have

the exact same number of parameters. As expected, NPTNs match the perfor-

mance of vanilla ConvNets when there were no additional transformations added

(0� and 0 pixels)4. However, as the transformation intensity (range) is increased,

NPTNs perform signi�cantly better than ConvNets. Trends consistent with previ-

ous experiments were observed with the highest performance observed with NPTN

4NPTNs perform slightly better than ConvNets for 0 � rotations because for all rotation experi-
ments, small translations up to 2 pixels were applied only in training.

21

Figure 3.4: Test errors on MNIST for Capsule Nets augmented with NPTNs. (128)
denotes a Capsule Network with a vanilla ConvNet. Other labels are NPTNs with
(channels, jGj). The number of �lters from left to right is f 4224; 4160; 4074; 4128g.
NPTNs signi�cantly outperform ConvNets in Capsule Nets with fewer �lters.

(jGj = 3). This highlights the main feature of NPTNs, i.e. their ability to model ar-

bitrary transformations observed in data without any apriori information and with-

out changes in architecture whatsoever. They exhibit better performance in settings

where both rotation invariance and stronger translation invariance is required (even

though ConvNets are designed speci�cally to handle translations). This ability is

something that previous deep architectures did not possess nor demonstrate.

3.3.4 NPTNs with Capsule Networks

Capsule Networks with dynamic routing were recently introduced as an extension

of standard neural networks [13]. Since the original architecture is implemented

using vanilla convolution layers, invariance properties of the networks are limited.

Our goal for this experiment is to replace Convolution Capsule Nets with NPTN

Capsules. We replace the convolution layers in the Primary Capsule layer of the

22

published architecture with NPTN layers while maintaining the same number of

parameters (by reducing number of channels and increasingjGj). Our baseline

is the proposed CapsuleNet with 3 layers using a third party implementation in

PyTorch5. The baseline convolution capsule layer had 128 output channels. The

NPTN variants progressively decreased the number of channels asjGj was increased.

All other hyperparameters were preserved. The networks were trained on the 2-pixel

shifted MNIST for 50 epochs with a learning rate of 10� 3. The performance statistics

of 5 runs are reported in Fig. 3.4. We �nd that for roughly the same number of

kernel �lters (and parameters), Capsule Nets have much to gain from the use of

NPTN layers (a signi�cant test error decrease from 1.90 to 0.78 for1
3 of the baseline

number of channels andjGj = 3). The learning of invariances within each capsule

signi�cantly increases e�cacy and performance of the overall architecture.

3.4 Discussion on NPTNs

It is clear that the success of ConvNets is not the whole story towards solving per-

ception. Studies into di�erent aspects of network design will prove to be paramount

in addressing the complex problem of not just visual but general perception.

The development of NPTNs o�er one such design aspect,i.e. learning non-

parametric invariances and symmetries directly from data. Through our experi-

ments, we found that NPTNs can indeed e�ectively learn general invariances with-

out any apriori information. Further, they are e�ective and improve upon vanilla

ConvNets even when applied to general vision data as presented in CIFAR-10 and

ETH-80 with complex unknown symmetries. This seems to be a critical requirement

for any system that is aimed at taking a step towards general perception. Assuming

5https://github.com/dragen1860/CapsNet-Pytorch.git

23

detailed knowledge of symmetries in real-world data (not just visual) is impractical

and successful models would need to adapt accordingly.

In all of our experiments, NPTNs were compared to vanilla ConvNet base-

lines with the same number of �lters (and thereby more channels). Interestingly,

the superior performance of NPTNs despite having fewer channels indicates that

better modelling of invariances is a useful goal to pursue during design. Explicit

and e�cient modelling of invariances has the potential to improve many existing ar-

chitectures. Indeed, we outperform several state-of-the-art algorithms on ETH-80.

In our experiments, we also �nd that Capsule Networks which utilized NPTNs in-

stead of vanilla ConvNets performed much better. This motivates and justi�es more

attention towards architectures and other solutions that e�ciently model general in-

variances in deep networks. Such an endeavour might not only produce networks

performing better in practice, it also promises to deepen our understanding of deep

networks and perception in general.

24

Chapter 4

Permanent Random

Connectome Networks

4.1 Motivating Permanent Random Connectome Net-

works

4.1.1 The Problem of Invoking Invariances.

Learning invariances to nuisance transformations in data has emerged to be a core

problem in machine learning [26, 3, 1, 39, 23]. Moving towards real-world data of

di�erent modalities, it is a daunting task to theoretically model all nuisance trans-

formations. Towards this goal, methods which learn non-parametric invariances

from the data itself without any change in architecture will be critical. However,

before delving into methods which learn such invariances however, it is important

to study methods which incorporate known invariances in data. An early method

to incorporate the translation prior was the Convolutional Neural Network (Con-

vNet) [7]. Over the years, there have been e�orts in investigating what other trans-

25

Figure 4.1: Left: Operations comprising the PRC-NPTN layer. The number of
input and output channels in the Conv layer is (inch) and (inch�j Gj) respectively.
G is the number of �lters (linear transformations learnt) for each input channel.
The key operation proposed is the Permanent Random Channel shu�ing operation
with a �xed index mapping for every forward pass. This indexing or connectome
is initialized randomly during network initialization. Center: Architecture of
the PRC-NPTN layer. Each input channel is convolved with a number of �lters
(parameterized by G). Each of the resultant activation maps is connected to a one
of the channel max pooling units randomly (initialized once, �xed during training
and testing). Each channel pooling unit pools over a �xed random support of a size
parameterized by CMP. Right: Explicit invariances enforced within deep networks
in prior art are mostly parametric in nature. The important problem of learning
non-parametric invariances from data has not received a lot of attention.

formations result in useful hand-crafted priors in data such as rotation and scale

[17, 18, 20, 42, 23, 24, 25]. It is important to note however that these methods ul-

timately were limited to hand-crafted invariances assumed to be useful for the task

at hand.

Motivation of this Study: In this study, we motivate and investigate one

possible architecture that can learn invariances towards multiple transformations

from data itself. At the heart of the architecture is the structure called the perma-

nent random connectome. This simply refers to a channel shu�ing layer that uses

a �xed shu�ing schedule throughout the life of the network (including training and

testing) resulting in a permanent connectome. Importantly however, this shu�ing

26

indexing is chosen at random at the initialization of the network. Thereby leading

to the layer being referred to as the permanentrandom connectome. We �nd that

layers utilizing the permanent random operation allow architectures to learn multi-

ple invariances e�ciently from data itself. Our motivation also loosely stems from

observations regarding connectomes in the cortex.

Encoding Invariances through Deep Architectures. Before delving

into methods which learn such invariances, it is important to study methods which

incorporate known invariances in data. Many times it is the case that a few most

predominant nuisance transformations in data are well understood. Visual data is

one such domain with translation being perhaps the most common nuisance trans-

formation emerging. An early method to incorporate this prior into the algorithm

was the Convolutional Neural Network (ConvNet) [7] with the pooling operation

following the convolution. The success of ConvNets indicates that addressing pre-

dominant invariances in data warrants being a major objective. Over the years,

there have been e�orts in investigating what other transformations would result in

similar breakthroughs. Rotation was investigated at length with studies rotating

the inputs [17] and the convolution �lters [18, 20]. Similarly combinations of rota-

tion, scale and translation invariances were explored [42] along with more general

parametric invariances [23, 24, 25]. These e�orts provided valuable insights into the

nature of visual data leading to more powerful networks, albeit for speci�c or special-

ized tasks. For more general tasks, methods which focused on better optimization,

minimizing better objectives and developing more e�ective architectures proved to

be more successful. Nonetheless, it is important to note that though these meth-

ods were motivated di�erently, they ultimately provided hand-crafted invariances

assumed to be useful for the task at hand.

27

Incorporating known invariances using deep networks. Convolu-

tional architectures have seen many e�orts to produce rotation invariant represen-

tations. [16] and [17] rotate the input itself before feeding it into stacks of CNNs

and generating rotation invariant representations through gradual pooling or pa-

rameter sharing. [18, 19, 20] rotate the convolution �lters (a cheaper albeit still

expensive operation) instead of transforming the input followed by pooling. A simi-

lar approach was explored for scale by [21]. An interesting direction of research was

explored by [22] where the rotation, scale and translation invariant �lters were �xed

and non-trainable. [23, 24] presented methods to incorporate parametric invariances

using groups and warped convolutions. The transformations in [24, 25] are known

apriori and the sample grids and steerable �lters are generated o�ine. This limits

the capability to learn arbitrary and adaptive transformations. NPTNs need no

such apriori knowledge apart that encoded in its architecture, can learn arbitrary

non-parametric transformations and �nally are simpler and perhaps more elegant

in implementation.

4.1.2 Relaxed Biological Motivation for Randomly Initialized Con-

nectomes.

Although not central to our motivation, the observation that the cortex lacks precise

local pathways for back-propagation provided the initial inspiration for this study. It

further garnered pull from the observation that random unstructured local connec-

tions are indeed common in many parts of the cortex [43, 44]. Moreover, it has been

shown that orientation selectivity can arise in the visual cortex even through local

random connections [45]. Though we do not explore these biological connections in

more detail, it is still an interesting observation. There has also been some inter-

28

esting work which explored the use of random weight matrices for back propagation

[46]. Here, the forward weight matrices were updated so as to fruitfully use the ran-

dom weight matrices during back propagation. The motivation of the [46] study was

to address the biological implausibility of the transport of precise gradients through

the cortex due to the lack of exact connections and pathways [47, 48, 49, 50]. The

common presence of random connections in the cortex at alocal level leads us to

ask: Is it possible that such locally random connectomes improve generalization in

deep networks? We provide evidence for answering this question in the positive.

Contributions. 1) We motivate permanent random connectomes from the

perspective of learning invariance to multiple transformations directly from data.

The fundamental problem of learning non -parametric invariances in perception has

not received enough attention. We present an architectural prior capable of such a

task with loose biological motivation. 2) We present a theoretical result on learning

invariances to transformations which do not obey a group structure in contrast to

prior work. 3) We provide results on learning invariances to individual and multiple

transformations in data without any change in architecture whatsoever. Further,

we demonstrate improvements in generalization while using PRC-NPTN as a drop

in replacement to conv layers in DenseNets. 4) Finally, as an engineering e�ort, we

develop fast and e�cient CUDA kernels for random channel pooling which result

in e�cient implementations of PRC-NPTNs in terms of computational speed and

memory requirements compared to traditional Pytorch code.

4.2 Permanent Random Connectome NPTNs

We begin by motivating permanent random connectomes from the perspective of

selecting the support for pooling. We �nd that permanent random channel pooling

29

invokes invariance to multiple transformations simultaneously. Investigating idea

of pooling across transformations to invoke invariance, permanent random pooling

emerges naturally. As part of our contribution, we present a theoretical result which

con�rms a long standing intuition that max pooling invokes invariance.

4.2.1 Invoking Invariance through Max Pooling.

In previous years a number of theories have emerged on the mechanics of generating

invariance through pooling. [26, 27] develop a framework in which the transforma-

tions are modelled as a group comprised of unitary operators denoted byf g 2 Gg.

These operators transform a given �lter w through the operation gw1, following

which the dot-product between these transformed �lters and an novel input x is

measured through hx; gwi . It was shown by [26] that any moment such as the

mean or max (in�nite moment) of the distribution of these dot-products in the set

fhx; gwij g 2 Gg is an invariant. These invariants will exhibit robustness to the

transformation in G encoded by the transformed �lters in practice, as con�rmed by

[4, 5]. Though this framework did not make any assumptions on the distribution of

the dot-products, it imposed the restricting assumption of group symmetry on the

transformations. We now show that invariance can be invoked even whenavoiding

the assumption that the transformations in G need to form a group. Nonetheless,

we assume that the distribution of the dot-product hx; gwi is uniform and thus we

have the following result2.

Lemma 4.2.1. (Invariance Property) Assume a novel test input x and a �lter w

both �xed vectors2 Rd. Further, let g denote a random variable representing unitary

1The action of the group element g on w is denoted by gw to promote clarity.
2We thank Purvasha Chakravarti for the proof. The assumption of the distribution being uniform

is meant to provide insight into the general behavior of the max pooling operation, rather than a
statement that deep learning features are uniformly distributed.

30

operators with some distribution. Finally, let �(x) = hx; gwi , with �(x) � U(a; b)

i.e. a Uniform distribution between a and b. Then, we have

Var(max �(x)) � Var(�(x)) = Var(hg� 1x; wi)

Proof. Let X be the random variable representing the randomness inhx; gwi for

�xed x; w and random g. We assume thatX � U(0; 1).

Considering a sample setX 1; X 2:::X n � U(0; 1) , then X (n) = max 1� i � nX n .

Now,

P(X (n) � x) = P(X i � x; 8i) (4.1)

= P(X i � x)n (4.2)

= xn (4.3)

Let the density of X (n) be denoted byf X (n) (x), then

f X (n) (x) =

8
>>>><

>>>>:

0 x � 0

nxn� 1 0 � x � 1

1 x � 1
Now,

E[X (n)] =
Z 1

0
xnx n� 1dx =

xn+1

n + 1
nj10 =

n
n + 1

E[X 2
(n)] =

Z 1

0
x2nxn� 1dx =

xn+2

n + 2
nj10 =

n
n + 2

Therefore,

Var(X (n)) =
n

n + 1
�

�
n

n + 1

� 2

=
n

(n + 2)(n + 1) 2

Since the variance ofU(0; 1) is 1
12 i.e. Var(X i) = 1

12, and Var(X (n)) is a decreasing

31

function in n, along with the fact that Var(X (n)) for n = 1 is 1
12, we have

Var(X (n)) � Var(X i)

For general U(a; b), it follows shortly after considering Yi = X i � a
b� a and that

Var(Yi) = Var(X i). Finally, due to unitary g, hx; gwi = hg� 1x; wi .

This result is interesting because it shows that the max operation of the

dot-products has less variance due tog than the pre-pooled features. Though this

is largely known empirical result, a concrete proof for invoking invariance was so

far missing. More importantly, it bypasses the need for a group structure on the

nuisance transformationsG. Practical studies such as [4, 5] had ignored the e�ects of

non-group structure in theory while demonstrating e�ective empirical results. Also

note that the variance of the max is less than the variance of the quantityhg� 1x; wi ,

which implies that max �(x) is more robust to g even in test, though it has never

observedgx. This useful property is due to the unitarity of g.

4.2.2 Connection to Deep Networks.

PRC-NPTN as we will show, perform max pooling acrosschannels not space, to

invoke invariance. In the framework hx; gwi , w would be one convolution �lter

with g being the transformed version of it. Note that this modelling is done only

to satisfy a theoretical construction, we do not actually transform �lters in prac-

tice. All transformed �lters are learnt through backpropagation. This framework is

already utilized in ConvNets. For instance, ConvNets [7] pool only across transla-

tions (convolution operation itself followed by spatial max pooling implies g to be

translation).

32

(a) Homogeneous Structured Pooling (b) Permanent Random Support Pooling

Figure 4.2: (a) Homogeneous Structured Pooling pools across the entire range
of transformations of the same kind leading to feature vectors invariant only to
that particular transformations. Here, two distinct feature vectors are invariant to
transformation T1 and T2 independently. (b) Heterogeneous Random Support
Pooling pools across randomly selected ranges of multiple transformationssimul-
taneously. The pooling supports are de�ned during initialization and remain �xed
during training and testing. This results in a single feature vector that is invariant
to multiple transformations simultaneously. Here, each colored box de�nes the sup-
port of the pooling and pools across features only inside the boxed region leading
to one single feature.

(a) PRC-NPTN Random Channel Pooling

Figure 4.3: Vectorized Random Support Pooling extends this idea to con-
volutional networks, where one realizes that the random support pooling on the
feature grid (on the left) is equivalent to random support pooling of the vectorized
grid. Each element of the vector (on the right) now represents a singlechannel in
a convolutional network and hence random support pooling in PRC-NPTNs occur
across channels.

33

4.2.3 Invoking Invariance through Channel Pooling in Deep Net-

works.

Consider a grid of features that have been obtained through a dot producthx; gwi

(for instance from a convolution activation map, where the grid is simply populated

with each k � k � 1 �lter, not k � k � c) (see Fig. 4.2(a)). Assume that along the

two axes of the grid, two di�erent kinds of transformation are acted. T1 along the

horizontal axis and T2 along the vertical. T1 = g1(�; � 1) where g1 is a transformation

parameterized by � 1 that acts on w and similarly T2 = g2(�; � 2). Now, pooling

homogeneously across one axis invokes invarianceonly to the corresponding g (for

a more in depth analysis see [26]). Similarly, pooling alongT2 only will result in

a feature vector (Feature 2) invariant only to T2. These representations (Feature

1 and 2) have complimentary invariances and can be used for complimentary tasks

e.g. face recognition (invariant to pose) versus pose estimation (invariant to subject).

This approach has one major limitation that tihs scales linearly with the number

of transformations which is impractical. One therefore would need features that

are invariant to multiple transformations simultaneously. A simple yet e�ective

approach is to pool along all axes thereby being invariant to all transformations

simultaneously. However, doing so will result in a degenerative feature (that is

invariant to everything and discriminative to nothing). Therefore, the key is to

limit the range of pooling performed for each transformation.

4.2.4 Choosing the Support for Pooling at Random: Permanent

Random Connectomes.

A solution to trivial feature problem described above, is to limit the range or support

of pooling as illustrated in Fig.4.2(b). One simple way of selecting such a support for

34

pooling is at random. This selection would happen only once during initialization

of the network (or any other model), and will remain �xed through training and

testing. In order to increase the selectivity of such features, multiple such pooling

units are needed with such a randomly initialized support [26, 6]. These multiple

pooling units together form the feature that is invariant to multiple transformations

simultaneously, which improves generalization as we �nd in our experiments. This

is called heterogeneous pooling and Fig. 4.2(b) illustrates this more concretely. We

therefore �nd that permanent random pooling is motivated naturally through the

need to attain invariance to multiple transformations simultaneously.

4.2.5 The PRC-NPTN layer.

Fig. 4.1 shows the the architecture of a single PRC-NPTN layer . The PRC-NPTN

layer consists of a set ofN in � G �lters of size k � k where N in is the number of

input channels andG is the number of �lters connected to each input channel. More

speci�cally, each of theN in input channels connects tojGj �lters. Then, a number of

channel max pooling units randomly select a �xed number of activation maps to pool

over. This is parameterized by Channel Max Pool (CMP). Note that this random

support selection for pooling is the reason a PRC-NPTN layer contains a permanent

random connectome. These pooling supports once initialized do not change through

training or testing. Once max pooling over CMP activation maps completes, the

resultant tensor is average pooled across channels with a average pool size such that

the desired number of outputs is obtained. After the CMP units, the output is

�nally fed through a two layered network with the same number of channels with

1 � 1 kernels, which we call a pooling network. This small pooling network helps in

selecting non-linear combinations of the invariant nodes generated through the CMP

35

operation, thereby enriching feature combinations downstream. For experimental

rigor, we also benchmark against the baseline ConvNet supplemented with this 1x1

pooling network.

Invariances in a PRC-NPTN layer. Recent work introducing NPTNs

[51] had highlighted the Transformation Network (TN) framework in which invari-

ance is generated during the forward pass by pooling over dot-products with trans-

formed �lter outputs. A vanilla convolution layer with a single input and output

channel (therefore a single convolution �lter) followed by a k� k spatial pooling layer

can be seen as a single TN node enforcing translation invariance with the number

of �lter outputs being pooled over to be k � k. It has been shown thatk � k spatial

pooling over the convolution output of a single �lter is an approximation to channel

pooling across the outputs ofk � k translated �lters [51]. The output �(x) of such

an operation with an input patch x can be expressed as

�(x) = max
g2G

hx; gwi (4.4)

where G is the set of �lters whose outputs are being pooled over. Thus,G de�nes

the set of transformations and thus the invariance that the TN node enforces. In a

vanilla convolution layer, this is the translation group (enforced by the convolution

operation followed by spatial pooling). An NPTN removes any constraints on G

allowing it to approximately model arbitrarily complex transformations. A vanilla

convolution layer would have one �lter whose convolution is pooled over spatially

(for translation invariance). In contrast, an NPTN node has jGj independent �l-

ters whose convolution outputs are pooled acrosschannel wise leading to general

invariance.

A PRC-NPTN layer inherits the property from NPTNs to learn arbitrary

36

transformations and thereby arbitrary invariances using G. As Fig. 4.1(b) shows,

individual channel max pooling (CMP) nodes act as NPTN nodes sharing acommon

�lter bank as opposed to independent and disjoint �lter banks for vanilla NPTNs.

This allows for greater activation sharing, where transformations learned from data

through one subset of �lters can be used for invoking similar invariances in a parallel

computation path. This sharing and reuse of activation maps allows for higher

parameter and sample e�ciency. As we �nd in our experiments, randomization

plays a critical role here, allowing for a simple and quick approximation to obtaining

high performing invariances. A high activation map can activate multiple CMP

nodes, winning over multiple sub-sets of low activations. Gradients ow back to

these winning activations updating the �lters to further model the features observed

during that particular batch. Note that, CMP nodes in the same layer can pool

over disjoint subsets to invoke a variety of invariances, leading to a more versatile

network and also better modelling of a particular kind of invariance as we �nd in

our experiments. Further, the primary source of invoking invariances in NPTN was

understood to be the symmetry of the unitary group action space [51]. General

invariances were assumed to be only approximately forming a group. Lemma 4.2.1

shows that group symmetry is not necessary to reduce variance of the quantity

max �(x) due to the action of the set elementsg on some test input patchx. Though,

the result makes a strong assumption regarding the distribution of �(x), it to the

best of our knowledge the �rst result of its kind to show increased invariance without

a group symmetric action.

37

(a) Rotation 0 � (b) Rotation 30 � (c) Rotation 60 � (d) Rotation 90 �

Figure 4.4: Only Rotation Transformation Results: Test error statistics with
mean and standard deviation on MNIST with progressively extremerandom ro-
tations . ConvNet FC denotes the addition of a 2-layered pooling 1� 1 pooling
network after every layer. Note that for this experiment, CMP= jGj. Permanent
Random Connectomes help with achieving better generalization despite increased
nuisance transformations.

4.3 Empirical Evaluation and Discussion

Goal. The goal of our evaluation study is to demonstrate PRC-NPTNs as capable of

learning transformations from data and to showcase improvements in generalization

in supervised classi�cation over relevant baselines. The goal is not in fact, to compete

with the state of the art approaches for any dataset.

General Experimental Settings. For all experiments, we run all models

for 300 epochs trained using SGD. The initial learning rate was kept at 0.1 and

decreased by 10 at 50% and 75% epoch completion. Momentum was kept at 0.9

with a weight decay of 10� 5. Batch size was kept at 64 for both MNIST and ETH-80

3. For the MNIST experiments, gradients were clipped to norm 1. Each block for

all baselines for ConvNet and PRC-NPTN had either a convolution layer or PRC-

NPTN layer followed by batch normalization, PReLU and spatial max pooling. The

convolutional kernel size for all models was kept at 5� 5 for all MNIST experiments

3We provide experiments on CIFAR-10 in the supplementary.

38

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Chapter 1 The Fundamental Problem
	1.1 Convolutional Networks and Beyond.
	1.2 Prior Art

	Chapter 2 The Transformation Network Paradigm
	2.1 The Transformation Network
	2.2 Modeling Transformations as Unitary Groups.
	2.3 Invariances in a TN node.
	2.4 Relaxing towards Non-group and Non-Unitary Structure in a TN node (Towards NPTNs).

	Chapter 3 Non-Parametric Transformation Networks
	3.1 Generalizing Convolution Architectures.
	3.2 The NPTN
	3.2.1 NPTN Layer Structure, Forward Pass and Training.
	3.2.2 Invariance Modelling in NPTNs is Data Driven and Highly Flexible.

	3.3 Empirical Evaluation of NPTNs
	3.3.1 Benchmarking against ConvNets on CIFAR-10
	3.3.2 Benchmarking against other approaches: ETH-80
	3.3.3 Learning Unknown Transformation Invariances from Data
	3.3.4 NPTNs with Capsule Networks

	3.4 Discussion on NPTNs

	Chapter 4 Permanent Random Connectome Networks
	4.1 Motivating Permanent Random Connectome Networks
	4.1.1 The Problem of Invoking Invariances.
	4.1.2 Relaxed Biological Motivation for Randomly Initialized Connectomes.

	4.2 Permanent Random Connectome NPTNs
	4.2.1 Invoking Invariance through Max Pooling.
	4.2.2 Connection to Deep Networks.
	4.2.3 Invoking Invariance through Channel Pooling in Deep Networks.
	4.2.4 Choosing the Support for Pooling at Random: Permanent Random Connectomes.
	4.2.5 The PRC-NPTN layer.

	4.3 Empirical Evaluation and Discussion
	4.3.1 Efficacy in Learning Arbitrary and Unknown Transformations Invariances from Data.
	4.3.2 Evaluation on the ETH-80 dataset
	4.3.3 Efficacy on CIFAR-10 Image Classification.
	4.3.4 Exploring parameter reduction due to PRC-NPTNs
	4.3.5 Pruning PRC-NPTNs for extreme parameter reduction

	Chapter 5 The Next Chapter
	Bibliography

