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The Problem

The Approach: Ring Loss

The Experiments
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Problem 1: Inconsistency between Training and Tes>ng
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Constrain *+ = 1, we are op<mizing on:
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Problem 2: High Angular Varia>on for Low-norm Features
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Angular varia<on for low norm features is usually higher than high norm features due to varia<on in feature
samples (e.g. during tes>ng). 
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High varia)on area
in tes)ng.

For faces, low norm features are usually 
low-resolu0on, blurry and off-angled hard 
examples, which we also want to handle.
Test samples follow similar behavior.

/• : loss weight ∈ 12
3• : target radius for all feature (trainable) ∈ 12
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Effect on Classifica>on Angular Margin:
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Objec)ve: Minimize the difference between feature 
norm and a shared radius R. 

Result: All features share roughly the same norm R. 

Classifica<on loss only depend on ü cosine. 

Reduc<onü in low norm features during tes<ng.

1. Face Matching Score Improvement:

The Experiments

✘

0.152 → 0.354 0.299 → 0.560 0.147 → 0.363 0.185 → 0.385 

0.076 → 0.294 0.055 → 0.273 0.319 → 0.521 0.357 → 0.560 

0.215 → 0.437 0.219 → 0.419 0.243 → 0.469 0.320 → 0.526 

0.195 → 0.649 0.283 → 0.628 0.182 → 0.504 0.451 → 0.822 

0.044 → 0.372 -0.081 → 0.367 0.254 → 0.617 0.273 → 0.585 

0.017 → 0.351 0.337 → 0.660 0.028 → 0.471 0.186 → 0.517 

L2-SoLmax Loss à SoLmax Loss + Ring LossSoftmax Loss à Softmax Loss + Ring Loss

2. Face Verifica>on Results:

3. Performance on 
Low-resolu>on images:

Paper Link
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As we manually decrease the resolu<on of the image, 
performances of all face recogni<on methods drop. However, 
since Ring loss is able to efficiently learn hard examples while
regularizing the norm, it consistently outperforms other 
methods. 

Difference in feature norm
leads to imbalance in class
angular margin


