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(1) Face recognition (153,000 semi-synthetic image dataset). 1000
subjects with 153 poses each. Images rendered from a 3D model with real
texture. We compare DIKF against sampled templates (NDP) and
discriminative linear templates (DILF).

Linear Invariant Features: Previous work
[1] builds linear invariant that are implicitly
(but not explicitly) discriminative. When a
group of transformations act on an object,
they create an orbit.

Two complementary tasks: To perform two complementary tasks simultaneously
using a single unsupervised feature extractor.

" Who is this subject?

(2) Face recognition (LFW): Max-pooled DIKF (in red) matches
state-of-the-art results on two LFW protocols, despite being simpler than
competing methods and working on raw pixels.

™ What is the subject’s pose?

Landmark-free: The paper focuses on dense landmark-free (only two eye center
locations) face recognition and pose estimation.
Also extends to a completely landmark-free approach which is also alignment free.

To characterize the orbit, previously simply sampled
templates were used. Explicit discrimination provides

better matching.
Lo L

(3) Pose estimation: 15 poses (-40 to 40 yaw and -20 to 20 pitch, step of
20). Train on the 250 subjects and test on the 1500 images of the remaining
100 subjects.
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Definition 3.1 (Unitary Kernel). We define a kernel
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